Electrorheological dampers, part i: Analysis and design
Electrorheological (ER) materials are suspensions of specialized, micron-sized particles in nonconducting oils. When electric fields are applied to ER materials, they exhibit dramatic changes (within milliseconds) in material properties. P reyield, yielding, and postyield mechanisms are all influenced by the electric field. Namely, an applied electric field dramatically increases the stiffness and energy dissipation properties of these materials. A previously known cubic equation which describes the flow of fluids with a yield stress through a rectangular duct can be applied to annular flow, provided that certain conditions on the material properties are satisfied. An analytic solution and a uniform approximation to the solution, for the rectangular duct Poiseuille flow case is presented. A numerical method is required to solve the flow in annular geometries. The approximation for rectangular ducts is extended to deal with the annular duct case. © 1996 ASME.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4017 Mechanical engineering
- 4005 Civil engineering
- 4001 Aerospace engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
- 0901 Aerospace Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4017 Mechanical engineering
- 4005 Civil engineering
- 4001 Aerospace engineering
- 0913 Mechanical Engineering
- 0905 Civil Engineering
- 0901 Aerospace Engineering