
Spatio-temporal modeling of fine particulate matter
Studies indicate that even short-term exposure to high concentrations of fine atmospheric particulate matter (PM2.5) can lead to long-term health effects. In this article, we propose a random effects model for PM2.5 concentrations. In particular, we anticipate urban/rural differences with regard to both mean levels and variability. Hence we introduce two random effects components, one for rural or background levels and the other as a supplement for urban areas. These are specified in the form of spatio-temporal processes. Weighting these processes through a population density surface results in nonstationarity in space. We analyze daily PM2.5 concentrations in three midwestern U.S. states for the year 2001. A fully Bayesian model is implemented, using MCMC techniques, which enables full inference with regard to process unknowns as well as predictions in time and space. © 2006 American Statistical Association and the International Biometric Society.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 49 Mathematical sciences
- 41 Environmental sciences
- 31 Biological sciences
- 06 Biological Sciences
- 05 Environmental Sciences
- 01 Mathematical Sciences
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 49 Mathematical sciences
- 41 Environmental sciences
- 31 Biological sciences
- 06 Biological Sciences
- 05 Environmental Sciences
- 01 Mathematical Sciences