
Zero-inflated models with application to spatial count data
Count data arises in many contexts. Here our concern is with spatial count data which exhibit an excessive number of zeros. Using the class of zero-inflated count models provides a flexible way to address this problem. Available covariate information suggests formulation of such modeling within a regression framework. We employ zero-inflated Poisson regression models. Spatial association is introduced through suitable random effects yielding a hierarchical model. We propose fitting this model within a Bayesian framework considering issues of posterior propriety, informative prior specification and well-behaved simulation based model fitting. Finally, we illustrate the model fitting with a data set involving counts of isopod nest burrows for 1649 pixels over a portion of the Negev desert in Israel.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 49 Mathematical sciences
- 41 Environmental sciences
- 31 Biological sciences
- 06 Biological Sciences
- 05 Environmental Sciences
- 01 Mathematical Sciences
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 49 Mathematical sciences
- 41 Environmental sciences
- 31 Biological sciences
- 06 Biological Sciences
- 05 Environmental Sciences
- 01 Mathematical Sciences