Skip to main content

The Hodge De Rham theory of relative Malcev completion

Publication ,  Journal Article
Hain, RM
Published in: Annales Scientifiques de l'Ecole Normale Superieure
1998

Suppose that X is a smooth manifold and ρ : π1 (X,N) → S is a representation of the fundamental group of X into a real reductive group with Zariski dense image. To such data one can associate the Malcev completion G of π1(X,x) relative to ρ. In this paper we generalize Chen's iterated integrals and show that the H0 of a suitable complex of these iterated integrals is the coordinate ring of G. This is used to show that if X is a complex algebraic manifold and ρ is the monodromy representation of a variation of Hodge structure over X, then the coordinate ring of G has a canonical mixed Hodge structure. © Elsevier, Paris.

Duke Scholars

Published In

Annales Scientifiques de l'Ecole Normale Superieure

Publication Date

1998

Volume

31

Issue

1

Start / End Page

47 / 92

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0199 Other Mathematical Sciences
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Hain, R. M. (1998). The Hodge De Rham theory of relative Malcev completion. Annales Scientifiques de l’Ecole Normale Superieure, 31(1), 47–92.
Hain, R. M. “The Hodge De Rham theory of relative Malcev completion.” Annales Scientifiques de l’Ecole Normale Superieure 31, no. 1 (1998): 47–92.
Hain RM. The Hodge De Rham theory of relative Malcev completion. Annales Scientifiques de l’Ecole Normale Superieure. 1998;31(1):47–92.
Hain, R. M. “The Hodge De Rham theory of relative Malcev completion.” Annales Scientifiques de l’Ecole Normale Superieure, vol. 31, no. 1, 1998, pp. 47–92.
Hain RM. The Hodge De Rham theory of relative Malcev completion. Annales Scientifiques de l’Ecole Normale Superieure. 1998;31(1):47–92.

Published In

Annales Scientifiques de l'Ecole Normale Superieure

Publication Date

1998

Volume

31

Issue

1

Start / End Page

47 / 92

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0199 Other Mathematical Sciences
  • 0101 Pure Mathematics