A Wavelet-Based Correction Method for Eddy-Covariance High-Frequency Losses in Scalar Concentration Measurements
Eddy-covariance (EC) scalar-flux measurements suffer from unavoidable biases introduced by high-frequency losses in the sampled scalar concentration fluctuations. This bias alone leads to an underestimation of scalar fluxes by as much as 20% in some cases, especially when a closed-path gas analyzer is used to sample concentration far from the inlet location. A novel method that directly corrects for these high-frequency losses using only the sampled scalar-concentration time series is proposed and tested. The sampled concentration fluctuation time series is adjusted, point-by-point, in the wavelet half-plane for each EC averaging interval (≈30 min). Similarity between scalars (and temperature) is not necessary and a pre-defined theoretical shape of the cospectrum is not required, making this method attractive at meteorologically non-ideal sites. When closed-path gas analyzers are used to measure H
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Meteorology & Atmospheric Sciences
- 3701 Atmospheric sciences
- 0401 Atmospheric Sciences