beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors.
The beta(1)-adrenergic receptor (beta(1)AR) is the most abundant subtype of beta-adrenergic receptor in the mammalian brain and is known to potently regulate synaptic plasticity. To search for potential neuronal beta(1)AR-interacting proteins, we screened a rat brain cDNA library using the beta(1)AR carboxyl terminus (beta(1)AR-CT) as bait in the yeast two-hybrid system. These screens identified PSD-95, a multiple PDZ domain-containing scaffolding protein, as a specific binding partner of the beta(1)AR-CT. This interaction was confirmed by in vitro fusion protein pull-down and blot overlay experiments, which demonstrated that the beta(1)AR-CT binds specifically to the third PDZ domain of PSD-95. Furthermore, the full-length beta(1)AR associates with PSD-95 in cells, as determined by co-immunoprecipitation experiments and immunofluorescence co-localization studies. The interaction between beta(1)AR and PSD-95 is mediated by the last few amino acids of the beta(1)AR, and mutation of the beta(1)AR carboxyl terminus eliminated the binding and disrupted the co-localization of the beta(1)AR and PSD-95 in cells. Agonist-induced internalization of the beta(1)AR in HEK-293 cells was markedly attenuated by PSD-95 co-expression, whereas co-expression of PSD-95 has no significant effect on either desensitization of the beta(1)AR or beta(1)AR-induced cAMP accumulation. Furthermore, PSD-95 facilitated the formation of a complex between the beta(1)AR and N-methyl-d-aspartate receptors, as assessed by co-immunoprecipitation. These data reveal that PSD-95 is a specific beta(1)AR binding partner that modulates beta(1)AR function and facilitates physical association of the beta(1)AR with synaptic proteins, such as the N-methyl-d-aspartate receptors, which are known to be regulated by beta(1)AR stimulation.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Transfection
- Saccharomyces cerevisiae
- Recombinant Fusion Proteins
- Receptors, N-Methyl-D-Aspartate
- Receptors, Adrenergic, beta-1
- Rats
- Protein Transport
- Protein Binding
- Peptide Fragments
- Nerve Tissue Proteins
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Transfection
- Saccharomyces cerevisiae
- Recombinant Fusion Proteins
- Receptors, N-Methyl-D-Aspartate
- Receptors, Adrenergic, beta-1
- Rats
- Protein Transport
- Protein Binding
- Peptide Fragments
- Nerve Tissue Proteins