
Convergence of the point vortex method for 2-D vortex sheet
Publication
, Journal Article
Liu, JG; Xin, Z
Published in: Mathematics of Computation
April 1, 2001
We give an elementary proof of the convergence of the point vortex method (PVM) to a classical weak solution for the two-dimensional incompressible Euler equations with initial vorticity being a finite Radon measure of distinguished sign and the initial velocity of locally bounded energy. This includes the important example of vortex sheets, which exhibits the classical Kelvin-Helmholtz instability. A surprise fact is that although the velocity fields generated by the point vortex method do not have bounded local kinetic energy, the limiting velocity field is shown to have a bounded local kinetic energy.
Duke Scholars
Published In
Mathematics of Computation
DOI
ISSN
0025-5718
Publication Date
April 1, 2001
Volume
70
Issue
234
Start / End Page
595 / 606
Related Subject Headings
- Numerical & Computational Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 0802 Computation Theory and Mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Liu, J. G., & Xin, Z. (2001). Convergence of the point vortex method for 2-D vortex sheet. Mathematics of Computation, 70(234), 595–606. https://doi.org/10.1090/S0025-5718-00-01271-0
Liu, J. G., and Z. Xin. “Convergence of the point vortex method for 2-D vortex sheet.” Mathematics of Computation 70, no. 234 (April 1, 2001): 595–606. https://doi.org/10.1090/S0025-5718-00-01271-0.
Liu JG, Xin Z. Convergence of the point vortex method for 2-D vortex sheet. Mathematics of Computation. 2001 Apr 1;70(234):595–606.
Liu, J. G., and Z. Xin. “Convergence of the point vortex method for 2-D vortex sheet.” Mathematics of Computation, vol. 70, no. 234, Apr. 2001, pp. 595–606. Scopus, doi:10.1090/S0025-5718-00-01271-0.
Liu JG, Xin Z. Convergence of the point vortex method for 2-D vortex sheet. Mathematics of Computation. 2001 Apr 1;70(234):595–606.

Published In
Mathematics of Computation
DOI
ISSN
0025-5718
Publication Date
April 1, 2001
Volume
70
Issue
234
Start / End Page
595 / 606
Related Subject Headings
- Numerical & Computational Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 0802 Computation Theory and Mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics