On-line algorithms for path selection in a nonblocking network
This paper presents the first optimal-time algorithms for path selection in an optimalsize nonblocking network. In particular, we describe an N-input, N-output, nonblocking network with O(N log N) bounded-degree nodes, and an algorithm that can satisfy any request for a connection or disconnection between an input and an output in O(log N) bit steps, even if many requests are made at once. Viewed in a telephone switching context, the algorithm can put through any set of calls among N parties in O(log N) bit steps, even if many calls are placed simultaneously. Parties can hang up and call again whenever they like; every call is still put through O(log N) bit steps after being placed. Viewed in a distributed memory machine context, our algorithm allows any processor to access any idle block of memory within O(log N) bit steps, no matter what other connections have been made previously or are being made simultaneously.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Computation Theory & Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 4613 Theory of computation
- 0802 Computation Theory and Mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Computation Theory & Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 4613 Theory of computation
- 0802 Computation Theory and Mathematics
- 0101 Pure Mathematics