Control-based continuation for investigating nonlinear experiments
In this paper we present a systematic experimental study of two one-degree-of-freedom nonlinear devices using the newly introduced control-based continuation method of Sieber and Krauskopf. By considering hardening, softening and bistable spring characteristics, we demonstrate the versatility and power of the control-based continuation method for investigating nonlinear experiments. We show that, using this method, it is possible to track the stable orbits of the devices through a saddle-node bifurcation (fold) where they lose stability and continue them up to the resonance peak where they undergo a second saddle-node bifurcation. For the bistable case, a bifurcation diagram is produced that is strongly reminiscent of the bifurcation diagram produced using the classical harmonic balance solution. A detailed introduction to general continuation methods is included to enable implementation by other experimentalists. © 2011 The Author(s).
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Acoustics
- 4017 Mechanical engineering
- 4005 Civil engineering
- 0913 Mechanical Engineering
- 0906 Electrical and Electronic Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Acoustics
- 4017 Mechanical engineering
- 4005 Civil engineering
- 0913 Mechanical Engineering
- 0906 Electrical and Electronic Engineering