Volatility forecast comparison using imperfect volatility proxies
The use of a conditionally unbiased, but imperfect, volatility proxy can lead to undesirable outcomes in standard methods for comparing conditional variance forecasts. We motivate our study with analytical results on the distortions caused by some widely used loss functions, when used with standard volatility proxies such as squared returns, the intra-daily range or realised volatility. We then derive necessary and sufficient conditions on the functional form of the loss function for the ranking of competing volatility forecasts to be robust to the presence of noise in the volatility proxy, and derive some useful special cases of this class of "robust" loss functions. The methods are illustrated with an application to the volatility of returns on IBM over the period 1993 to 2003. © 2010 Elsevier B.V. All rights reserved.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Econometrics
- 4905 Statistics
- 3802 Econometrics
- 3801 Applied economics
- 1403 Econometrics
- 1402 Applied Economics
- 0104 Statistics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Econometrics
- 4905 Statistics
- 3802 Econometrics
- 3801 Applied economics
- 1403 Econometrics
- 1402 Applied Economics
- 0104 Statistics