Skip to main content
Journal cover image

Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings.

Publication ,  Journal Article
Chen, J; Wu, F-H; Wang, W-H; Zheng, C-J; Lin, G-H; Dong, X-J; He, J-X; Pei, Z-M; Zheng, H-L
Published in: Journal of experimental botany
August 2011

Hydrogen sulphide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in animals and plants. In this report, the role of H(2)S in modulating photosynthesis of Spinacia oleracea seedlings was investigated. The main results are as follows. (i) NaHS, a donor of H(2)S, was found to increase the chlorophyll content in leaves. (ii) Seedlings treated with different concentrations of NaHS for 30 d exhibited a significant increase in seedling growth, soluble protein content, and photosynthesis in a dose-dependent manner, with 100 μM NaHS being the optimal concentration. (iii) The number of grana lamellae stacking into the functional chloroplasts was also markedly increased by treatment with the optimal NaHS concentration. (iv) The light saturation point (Lsp), maximum net photosynthetic rate (Pmax), carboxylation efficiency (CE), and maximal photochemical efficiency of photosystem II (F(v)/F(m)) reached their maximal values, whereas the light compensation point (Lcp) and dark respiration (Rd) decreased significantly under the optimal NaHS concentration. (v) The activity of ribulose-1,5-bisphosphate carboxylase (RuBISCO) and the protein expression of the RuBISCO large subunit (RuBISCO LSU) were also significantly enhanced by NaHS. (vi) The total thiol content, glutathione and cysteine levels, internal concentration of H(2)S, and O-acetylserine(thiol)lyase and L-cysteine desulphydrase activities were increased to some extent, suggesting that NaHS also induced the activity of thiol redox modification. (vii) Further studies using quantitative real-time PCR showed that the gene encoding the RuBISCO large subunit (RBCL), small subunit (RBCS), ferredoxin thioredoxin reductase (FTR), ferredoxin (FRX), thioredoxin m (TRX-m), thioredoxin f (TRX-f), NADP-malate dehydrogenase (NADP-MDH), and O-acetylserine(thiol)lyase (OAS) were up-regulated, but genes encoding serine acetyltransferase (SERAT), glycolate oxidase (GYX), and cytochrome oxidase (CCO) were down-regulated after exposure to the optimal concentration of H(2)S. These findings suggest that increases in RuBISCO activity and the function of thiol redox modification may underlie the amelioration of photosynthesis and that H(2)S plays an important role in plant photosynthesis regulation by modulating the expression of genes involved in photosynthesis and thiol redox modification.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of experimental botany

DOI

EISSN

1460-2431

ISSN

0022-0957

Publication Date

August 2011

Volume

62

Issue

13

Start / End Page

4481 / 4493

Related Subject Headings

  • Sulfur
  • Sulfhydryl Compounds
  • Spinacia oleracea
  • Seedlings
  • Ribulose-Bisphosphate Carboxylase
  • Protein Subunits
  • Plant Leaves
  • Plant Biology & Botany
  • Photosynthesis
  • Oxidoreductases
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chen, J., Wu, F.-H., Wang, W.-H., Zheng, C.-J., Lin, G.-H., Dong, X.-J., … Zheng, H.-L. (2011). Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of Experimental Botany, 62(13), 4481–4493. https://doi.org/10.1093/jxb/err145
Chen, Juan, Fei-Hua Wu, Wen-Hua Wang, Chen-Juan Zheng, Guang-Hui Lin, Xue-Jun Dong, Jun-Xian He, Zhen-Ming Pei, and Hai-Lei Zheng. “Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings.Journal of Experimental Botany 62, no. 13 (August 2011): 4481–93. https://doi.org/10.1093/jxb/err145.
Chen J, Wu F-H, Wang W-H, Zheng C-J, Lin G-H, Dong X-J, et al. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of experimental botany. 2011 Aug;62(13):4481–93.
Chen, Juan, et al. “Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings.Journal of Experimental Botany, vol. 62, no. 13, Aug. 2011, pp. 4481–93. Epmc, doi:10.1093/jxb/err145.
Chen J, Wu F-H, Wang W-H, Zheng C-J, Lin G-H, Dong X-J, He J-X, Pei Z-M, Zheng H-L. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of experimental botany. 2011 Aug;62(13):4481–4493.
Journal cover image

Published In

Journal of experimental botany

DOI

EISSN

1460-2431

ISSN

0022-0957

Publication Date

August 2011

Volume

62

Issue

13

Start / End Page

4481 / 4493

Related Subject Headings

  • Sulfur
  • Sulfhydryl Compounds
  • Spinacia oleracea
  • Seedlings
  • Ribulose-Bisphosphate Carboxylase
  • Protein Subunits
  • Plant Leaves
  • Plant Biology & Botany
  • Photosynthesis
  • Oxidoreductases