## Support properties of the free measure for Boson fields

Publication
, Journal Article

Reed, M; Rosen, L

Published in: Communications in Mathematical Physics

June 1, 1974

Let μ be the measure on I′ (ℝd) corresponding to the Gaussian process with mean zero and covariance (f,(-Δ+1)-1g) on I (ℝd). It is proven that the set {Mathematical expression} has μ measure one if α>0 and β>1/2 and μ measure zero if α>0 and β<1/2; here Δd-1 is the Laplacian in any d-1 dimensions when d>1 and Δ0=Δ. © 1974 Springer-Verlag.

### Duke Scholars

## Published In

Communications in Mathematical Physics

## DOI

## EISSN

1432-0916

## ISSN

0010-3616

## Publication Date

June 1, 1974

## Volume

36

## Issue

2

## Start / End Page

123 / 132

## Related Subject Headings

- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics

### Citation

APA

Chicago

ICMJE

MLA

NLM

Reed, M., & Rosen, L. (1974). Support properties of the free measure for Boson fields.

*Communications in Mathematical Physics*,*36*(2), 123–132. https://doi.org/10.1007/BF01646326Reed, M., and L. Rosen. “Support properties of the free measure for Boson fields.”

*Communications in Mathematical Physics*36, no. 2 (June 1, 1974): 123–32. https://doi.org/10.1007/BF01646326.Reed M, Rosen L. Support properties of the free measure for Boson fields. Communications in Mathematical Physics. 1974 Jun 1;36(2):123–32.

Reed, M., and L. Rosen. “Support properties of the free measure for Boson fields.”

*Communications in Mathematical Physics*, vol. 36, no. 2, June 1974, pp. 123–32.*Scopus*, doi:10.1007/BF01646326.Reed M, Rosen L. Support properties of the free measure for Boson fields. Communications in Mathematical Physics. 1974 Jun 1;36(2):123–132.

## Published In

Communications in Mathematical Physics

## DOI

## EISSN

1432-0916

## ISSN

0010-3616

## Publication Date

June 1, 1974

## Volume

36

## Issue

2

## Start / End Page

123 / 132

## Related Subject Headings

- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics