Support properties of the free measure for Boson fields
Publication
, Journal Article
Reed, M; Rosen, L
Published in: Communications in Mathematical Physics
June 1, 1974
Let μ be the measure on I′ (ℝd) corresponding to the Gaussian process with mean zero and covariance (f,(-Δ+1)-1g) on I (ℝd). It is proven that the set {Mathematical expression} has μ measure one if α>0 and β>1/2 and μ measure zero if α>0 and β<1/2; here Δd-1 is the Laplacian in any d-1 dimensions when d>1 and Δ0=Δ. © 1974 Springer-Verlag.
Duke Scholars
Published In
Communications in Mathematical Physics
DOI
EISSN
1432-0916
ISSN
0010-3616
Publication Date
June 1, 1974
Volume
36
Issue
2
Start / End Page
123 / 132
Related Subject Headings
- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Reed, M., & Rosen, L. (1974). Support properties of the free measure for Boson fields. Communications in Mathematical Physics, 36(2), 123–132. https://doi.org/10.1007/BF01646326
Reed, M., and L. Rosen. “Support properties of the free measure for Boson fields.” Communications in Mathematical Physics 36, no. 2 (June 1, 1974): 123–32. https://doi.org/10.1007/BF01646326.
Reed M, Rosen L. Support properties of the free measure for Boson fields. Communications in Mathematical Physics. 1974 Jun 1;36(2):123–32.
Reed, M., and L. Rosen. “Support properties of the free measure for Boson fields.” Communications in Mathematical Physics, vol. 36, no. 2, June 1974, pp. 123–32. Scopus, doi:10.1007/BF01646326.
Reed M, Rosen L. Support properties of the free measure for Boson fields. Communications in Mathematical Physics. 1974 Jun 1;36(2):123–132.
Published In
Communications in Mathematical Physics
DOI
EISSN
1432-0916
ISSN
0010-3616
Publication Date
June 1, 1974
Volume
36
Issue
2
Start / End Page
123 / 132
Related Subject Headings
- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics