Skip to main content
Journal cover image

Support properties of the free measure for Boson fields

Publication ,  Journal Article
Reed, M; Rosen, L
Published in: Communications in Mathematical Physics
June 1, 1974

Let μ be the measure on I′ (ℝd) corresponding to the Gaussian process with mean zero and covariance (f,(-Δ+1)-1g) on I (ℝd). It is proven that the set {Mathematical expression} has μ measure one if α>0 and β>1/2 and μ measure zero if α>0 and β<1/2; here Δd-1 is the Laplacian in any d-1 dimensions when d>1 and Δ0=Δ. © 1974 Springer-Verlag.

Duke Scholars

Published In

Communications in Mathematical Physics

DOI

EISSN

1432-0916

ISSN

0010-3616

Publication Date

June 1, 1974

Volume

36

Issue

2

Start / End Page

123 / 132

Related Subject Headings

  • Mathematical Physics
  • 5107 Particle and high energy physics
  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 0206 Quantum Physics
  • 0105 Mathematical Physics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Reed, M., & Rosen, L. (1974). Support properties of the free measure for Boson fields. Communications in Mathematical Physics, 36(2), 123–132. https://doi.org/10.1007/BF01646326
Reed, M., and L. Rosen. “Support properties of the free measure for Boson fields.” Communications in Mathematical Physics 36, no. 2 (June 1, 1974): 123–32. https://doi.org/10.1007/BF01646326.
Reed M, Rosen L. Support properties of the free measure for Boson fields. Communications in Mathematical Physics. 1974 Jun 1;36(2):123–32.
Reed, M., and L. Rosen. “Support properties of the free measure for Boson fields.” Communications in Mathematical Physics, vol. 36, no. 2, June 1974, pp. 123–32. Scopus, doi:10.1007/BF01646326.
Reed M, Rosen L. Support properties of the free measure for Boson fields. Communications in Mathematical Physics. 1974 Jun 1;36(2):123–132.
Journal cover image

Published In

Communications in Mathematical Physics

DOI

EISSN

1432-0916

ISSN

0010-3616

Publication Date

June 1, 1974

Volume

36

Issue

2

Start / End Page

123 / 132

Related Subject Headings

  • Mathematical Physics
  • 5107 Particle and high energy physics
  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 0206 Quantum Physics
  • 0105 Mathematical Physics
  • 0101 Pure Mathematics