Skip to main content
Journal cover image

Asymptotically optimal kinodynamic motion planning for a class of modular self-reconfigurable robots

Publication ,  Journal Article
Reif, J; Slee, S
Published in: International Journal of Computational Geometry and Applications
April 1, 2011

Self-reconfigurable robots are composed of many individual modules that can autonomously move to transform the shape and structure of the robot. The task of self-reconfiguration, transforming a set of modules from one arrangement to another specified arrangement, is a key problem for these robots and has been heavily studied. However, consideration of this problem has typically been limited to kinematics and so in this work we introduce analysis of dynamics for the problem. We characterize optimal reconfiguration movements in terms of basic laws of physics relating force, mass, acceleration, distance traveled, and movement time. A key property resulting from this is that through the simultaneous application of constant-bounded forces by a system of modules, certain modules in the system can achieve velocities exceeding any constant bounds. This delays some modules in order to accelerate others. To exhibit the significance of simultaneously considering both kinematic and dynamics bounds, we consider the following "x-axis to y-axis" reconfiguration problem. Given a horizontal row of n modules, reconfigure that collection into a vertical column of n modules. The goal is to determine the sequence of movements of the modules that minimizes the movement time needed to achieve the desired reconfiguration of the modules. In this work we prove tight Θ(√n) upper and lower bounds on the movement time for the above reconfiguration problem. Prior work on reconfiguration problems which focused only on kinematic constraints kept a constant velocity bound on individual modules and so required time linear in n to complete problems of this type. © 2011 World Scientific Publishing Company.

Duke Scholars

Published In

International Journal of Computational Geometry and Applications

DOI

ISSN

0218-1959

Publication Date

April 1, 2011

Volume

21

Issue

2

Start / End Page

131 / 155

Related Subject Headings

  • Computation Theory & Mathematics
  • 4901 Applied mathematics
  • 4613 Theory of computation
  • 4607 Graphics, augmented reality and games
  • 0802 Computation Theory and Mathematics
  • 0801 Artificial Intelligence and Image Processing
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Reif, J., & Slee, S. (2011). Asymptotically optimal kinodynamic motion planning for a class of modular self-reconfigurable robots. International Journal of Computational Geometry and Applications, 21(2), 131–155. https://doi.org/10.1142/S0218195911003585
Reif, J., and S. Slee. “Asymptotically optimal kinodynamic motion planning for a class of modular self-reconfigurable robots.” International Journal of Computational Geometry and Applications 21, no. 2 (April 1, 2011): 131–55. https://doi.org/10.1142/S0218195911003585.
Reif J, Slee S. Asymptotically optimal kinodynamic motion planning for a class of modular self-reconfigurable robots. International Journal of Computational Geometry and Applications. 2011 Apr 1;21(2):131–55.
Reif, J., and S. Slee. “Asymptotically optimal kinodynamic motion planning for a class of modular self-reconfigurable robots.” International Journal of Computational Geometry and Applications, vol. 21, no. 2, Apr. 2011, pp. 131–55. Scopus, doi:10.1142/S0218195911003585.
Reif J, Slee S. Asymptotically optimal kinodynamic motion planning for a class of modular self-reconfigurable robots. International Journal of Computational Geometry and Applications. 2011 Apr 1;21(2):131–155.
Journal cover image

Published In

International Journal of Computational Geometry and Applications

DOI

ISSN

0218-1959

Publication Date

April 1, 2011

Volume

21

Issue

2

Start / End Page

131 / 155

Related Subject Headings

  • Computation Theory & Mathematics
  • 4901 Applied mathematics
  • 4613 Theory of computation
  • 4607 Graphics, augmented reality and games
  • 0802 Computation Theory and Mathematics
  • 0801 Artificial Intelligence and Image Processing