
Efficient parallel computation of the characteristic polynomial of a sparse, separable matrix
This paper is concerned with the problem of computing the characteristic polynomial of a matrix. In a large number of applications, the matrices are symmetric and sparse: with O(n) non-zero entries. The problem has an efficient sequential solution in this case, requiring O(n2) work by use of the sparse Lanczos method. A major remaining open question is: to find a polylog time parallel algorithm with matching work bounds. Unfortunately, the sparse Lanczos method cannot be parallelized to faster than time Ω(n) using n processors. Let M(n) be the processor bound to multiply two n × n matrices in O(log n) parallel time. Giesbrecht [G2] gave the best previous polylog time parallel algorithms for the characteristic polynomial of a dense matrix with O(M(n)) processors. There is no known improvement to this processor bound in the case where the matrix is sparse. Often, in addition to being symmetric and sparse, the matrix has a sparsity graph (which has edges between indices of the matrix with non-zero entries) that has small separators. This paper gives a new algorithm for computing the characteristic polynomial of a sparse symmetric matrix, assuming that the sparsity graph is s(n)-separable and has a separator of size s(n) = O(nγ), for some γ, 0 < γ < 1, that when deleted results in connected components of ≤ αn vertices, for some 0 < α < 1, with the same property. We derive an interesting algebraic version of Nested Dissection, which constructs a sparse factorization of the matrix A - λI
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Computation Theory & Mathematics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Computation Theory & Mathematics