
Low-loss directional cloaks without superluminal velocity or magnetic response.
The possibility of making an optically large (many wavelengths in diameter) object appear invisible has been a subject of many recent studies. Exact invisibility scenarios for large (relative to the wavelength) objects involve (meta)materials with superluminal phase velocity [refractive index (RI) less than unity] and/or magnetic response. We introduce a new approximation applicable to certain device geometries in the eikonal limit: piecewise-uniform scaling of the RI. This transformation preserves the ray trajectories but leads to a uniform phase delay. We show how to take advantage of phase delays to achieve a limited (directional and wavelength-dependent) form of invisibility that does not require loss-ridden (meta)materials with superluminal phase velocities.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 0906 Electrical and Electronic Engineering
- 0206 Quantum Physics
- 0205 Optical Physics
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 0906 Electrical and Electronic Engineering
- 0206 Quantum Physics
- 0205 Optical Physics