
Perfect relay lens at microwave frequencies based on flattening a Maxwell lens
We consider the design and implementation of a two-dimensional metamaterial relay lens, conceptually formed by flattening a Maxwell fisheye lens-a perfect imaging device-through the use of a coordinate transformation. Because Maxwell's equations are form-invariant under coordinate transformations, the specifications for the constitutive parameters of the device are obtained immediately in a procedure that has now become known as transformation optics. To obtain a more favorable implementation of the lens, we seek a quasi-conformal transformation optics transformation that minimizes the required anisotropy, such that the resulting lens can be formed using isotropic, dielectric-only media. We demonstrate a flattened Maxwell lens at microwave frequencies using a nonresonant metamaterial and confirm its focusing and broad bandwidth behavior. Such planar, dielectric-only structures can be readily implemented in infrared and optical waveguides. © 2011 Optical Society of America.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 5108 Quantum physics
- 5102 Atomic, molecular and optical physics
- 4008 Electrical engineering
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics
- 0102 Applied Mathematics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 5108 Quantum physics
- 5102 Atomic, molecular and optical physics
- 4008 Electrical engineering
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics
- 0102 Applied Mathematics