
Development and characterization of healable carbon fiber composites with a reversibly cross linked polymer
Carbon fiber reinforced polymer (CFRP) laminates with remendable cross-linked polymeric matrices were fabricated using a modified resin transfer mold (RTM) technique. The healable composite resin, bis-maleimide tetrafuran (2MEP4F), was synthesized by mixing two monomers, furan (4F) and maleimide (2MEP), at elevated temperatures. The fast kinetic rate of the reaction of polymer constituents requires a fast injection of the healable resin into the carbon fiber preform. The polymer viscosity as a function of time and temperature was experimentally quantified in order to optimize the fabrication of the composite material and to guarantee a uniform flow of the resin through the reinforcement. The method was validated by characterizing the thermo-mechanical properties of the polymerized 2MEP4F. Additionally, the thermo-mechanical properties of the remendable CFRP material were studied. © 2010 The Author(s).
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Materials
- 4017 Mechanical engineering
- 4016 Materials engineering
- 4005 Civil engineering
- 0913 Mechanical Engineering
- 0912 Materials Engineering
- 0901 Aerospace Engineering
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Materials
- 4017 Mechanical engineering
- 4016 Materials engineering
- 4005 Civil engineering
- 0913 Mechanical Engineering
- 0912 Materials Engineering
- 0901 Aerospace Engineering