
Depth discontinuities by pixel-to-pixel stereo
An algorithm to detect depth discontinuities from a stereo pair of images is presented. The algorithm matches individual pixels in corresponding scanline pairs, while allowing occluded pixels to remain unmatched, then propagates the information between scanlines by means of a fast postprocessor. The algorithm handles large untextured regions, uses a measure of pixel dissimilarity that is insensitive to image sampling, and prunes bad search nodes to increase the speed of dynamic programming. The computation is relatively fast, taking about 600 nanoseconds per pixel per disparity on a personal computer. Approximate disparity maps and precise depth discontinuities (along both horizontal and vertical boundaries) are shown for several stereo image pairs containing textured, untextured, fronto-parallel, and slanted objects in indoor and outdoor scenes.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4611 Machine learning
- 4607 Graphics, augmented reality and games
- 4603 Computer vision and multimedia computation
- 0801 Artificial Intelligence and Image Processing
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4611 Machine learning
- 4607 Graphics, augmented reality and games
- 4603 Computer vision and multimedia computation
- 0801 Artificial Intelligence and Image Processing