
Shape and motion from image streams under orthography: a factorization method
Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an ill-conditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under orthography without computing depth as an intermediate step. An image stream can be represented by the 2F×P measurement matrix of the image coordinates of P points tracked through F frames. We show that under orthographic projection this matrix is of rank 3. Based on this observation, the factorization method uses the singular-value decomposition technique to factor the measurement matrix into two matrices which represent object shape and camera rotation respectively. Two of the three translation components are computed in a preprocessing stage. The method can also handle and obtain a full solution from a partially filled-in measurement matrix that may result from occlusions or tracking failures. The method gives accurate results, and does not introduce smoothing in either shape or motion. We demonstrate this with a series of experiments on laboratory and outdoor image streams, with and without occlusions. © 1992 Kluwer Academic Publishers.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4611 Machine learning
- 4607 Graphics, augmented reality and games
- 4603 Computer vision and multimedia computation
- 0801 Artificial Intelligence and Image Processing
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4611 Machine learning
- 4607 Graphics, augmented reality and games
- 4603 Computer vision and multimedia computation
- 0801 Artificial Intelligence and Image Processing