Skip to main content

Numerical methods for axisymmetric and 3D nonlinear beams

Publication ,  Journal Article
Pinton, GF; Trahey, GE
Published in: Proceedings - IEEE Ultrasonics Symposium
December 1, 2005

Time domain algorithms that solve the Khokhlov-Zabolotzskaya-Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined. © 2005 IEEE.

Duke Scholars

Published In

Proceedings - IEEE Ultrasonics Symposium

DOI

ISSN

1051-0117

Publication Date

December 1, 2005

Volume

2

Start / End Page

1291 / 1294
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Pinton, G. F., & Trahey, G. E. (2005). Numerical methods for axisymmetric and 3D nonlinear beams. Proceedings - IEEE Ultrasonics Symposium, 2, 1291–1294. https://doi.org/10.1109/ULTSYM.2005.1603089
Pinton, G. F., and G. E. Trahey. “Numerical methods for axisymmetric and 3D nonlinear beams.” Proceedings - IEEE Ultrasonics Symposium 2 (December 1, 2005): 1291–94. https://doi.org/10.1109/ULTSYM.2005.1603089.
Pinton GF, Trahey GE. Numerical methods for axisymmetric and 3D nonlinear beams. Proceedings - IEEE Ultrasonics Symposium. 2005 Dec 1;2:1291–4.
Pinton, G. F., and G. E. Trahey. “Numerical methods for axisymmetric and 3D nonlinear beams.” Proceedings - IEEE Ultrasonics Symposium, vol. 2, Dec. 2005, pp. 1291–94. Scopus, doi:10.1109/ULTSYM.2005.1603089.
Pinton GF, Trahey GE. Numerical methods for axisymmetric and 3D nonlinear beams. Proceedings - IEEE Ultrasonics Symposium. 2005 Dec 1;2:1291–1294.

Published In

Proceedings - IEEE Ultrasonics Symposium

DOI

ISSN

1051-0117

Publication Date

December 1, 2005

Volume

2

Start / End Page

1291 / 1294