Dependability and security models
There is a need to quantify system properties methodically. Dependability and security models have evolved nearly independently. Therefore, it is crucial to develop a classification of dependability and security models which can meet the requirement of professionals in both fault-tolerant computing and security community. In this paper, we present a new classification of dependability and security models. First we present the classification of threats and mitigations in systems and networks. And then we present several individual model types such as availability, confidentiality, integrity, performance, reliability, survivability, safety and maintainability. Finally we show that each model type can be combined and represented by one of the model representation techniques: combinatorial (such as reliability block diagrams (RBD), reliability graphs, fault trees, attack trees), state-space (continuous time Markov chains, stochastic Petri nets, fluid stochastic Petri nets, etc) and hierarchical (e.g., fault trees in the upper level and Markov chains in the lower level). We show case studies for each individual model types as well as composite model types. ©2009 IEEE.