Skip to main content
Journal cover image

Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method.

Publication ,  Journal Article
Khoury, CG; Norton, SJ; Vo-Dinh, T
Published in: ACS nano
September 2009

The spatial and spectral responses of the plasmonic fields induced in the gap of 3-D nanoshell dimers of gold and silver are comprehensively investigated and compared via theory and simulation using the multipole expansion (ME) and the finite element method (FEM) in COMSOL, respectively. The E-field in the dimer gap was evaluated and compared as a function of shell thickness, interparticle distance, and size. The E-field increased with decreasing shell thickness, decreasing interparticle distance, and increasing size, with the error between the two methods ranging from 1 to 10%, depending on the specific combination of these three variables. This error increases several fold with increasing dimer size, as the quasi-static approximation breaks down. A consistent overestimation of the plasmon's fwhm and red shifting of the plasmon peak occurs with FEM, relative to ME, and it increases with decreasing shell thickness and interparticle distance. The size effect that arises from surface scattering of electrons is addressed and shown to be especially prominent for thin shells, for which significant damping, broadening, and shifting of the plasmon band is observed; the size effect also affects large nanoshell dimers, depending on their relative shell thickness, but to a lesser extent. This study demonstrates that COMSOL is a promising simulation environment to quantitatively investigate nanoscale electromagnetics for the modeling and designing of surface-enhanced Raman scattering (SERS) substrates.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

ACS nano

DOI

EISSN

1936-086X

ISSN

1936-0851

Publication Date

September 2009

Volume

3

Issue

9

Start / End Page

2776 / 2788

Related Subject Headings

  • Nanoscience & Nanotechnology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Khoury, C. G., Norton, S. J., & Vo-Dinh, T. (2009). Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano, 3(9), 2776–2788. https://doi.org/10.1021/nn900664j
Khoury, Christopher G., Stephen J. Norton, and Tuan Vo-Dinh. “Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method.ACS Nano 3, no. 9 (September 2009): 2776–88. https://doi.org/10.1021/nn900664j.
Khoury CG, Norton SJ, Vo-Dinh T. Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS nano. 2009 Sep;3(9):2776–88.
Khoury, Christopher G., et al. “Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method.ACS Nano, vol. 3, no. 9, Sept. 2009, pp. 2776–88. Epmc, doi:10.1021/nn900664j.
Khoury CG, Norton SJ, Vo-Dinh T. Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS nano. 2009 Sep;3(9):2776–2788.
Journal cover image

Published In

ACS nano

DOI

EISSN

1936-086X

ISSN

1936-0851

Publication Date

September 2009

Volume

3

Issue

9

Start / End Page

2776 / 2788

Related Subject Headings

  • Nanoscience & Nanotechnology