Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing.
We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We describe the models and their use for robust estimation of sparse latent factor structure and data/signal reconstruction. We develop computational algorithms for model exploration and posterior mode search, addressing the hard combinatorial optimization involved in the search over a huge space of potential sparse configurations. A mean-field variational technique coupled with annealing is developed to successively generate "artificial" posterior distributions that, at the limiting temperature in the annealing schedule, define required posterior modes in the GFM parameter space. Several detailed empirical studies and comparisons to related approaches are discussed, including analyses of handwritten digit image and cancer gene expression data.
Duke Scholars
Published In
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4905 Statistics
- 4611 Machine learning
- 17 Psychology and Cognitive Sciences
- 08 Information and Computing Sciences
Citation
Published In
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4905 Statistics
- 4611 Machine learning
- 17 Psychology and Cognitive Sciences
- 08 Information and Computing Sciences