Comparison of the photosensitivity and bacterial toxicity of spherical and tubular fullerenes of variable aggregate size
Nanomaterials such as fullerene C60, carbon nanotubes (CNTs), and other fullerenes show unique electrical, chemical, mechanical, and thermal properties that are not well understood in the context of the environmental behavior of this class of carbon-based materials. In this study, aqueous suspensions of three fullerenes nanoparticles, C60, single-wall (SW) and multi-wall (MW) CNTs were prepared by sonication and tested for reactive oxygen species (ROS) production and inactivation of Vibrio fischeri, a gram-negative rod-shaped bacterium, under ultraviolet (UV)-A irradiation. We show that ROS production and microbial inactivation increases as colloidal aggregates of C60, SWCNT, and MWCNT are fractionated to enrich with smaller aggregates by progressive membrane filtration. As the quantity and influence of these more reactive fractions of the suspension may increase with time and/or as the result of fractionation processes in the laboratory or the environment, experiments evaluating photo-reactivity and toxicity endpoints must take into account the evolution and heterogeneity of nanoparticle aggregates in water. © 2011 Springer Science+Business Media B.V.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nanoscience & Nanotechnology
- 5104 Condensed matter physics
- 4018 Nanotechnology
- 1007 Nanotechnology
- 0912 Materials Engineering
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nanoscience & Nanotechnology
- 5104 Condensed matter physics
- 4018 Nanotechnology
- 1007 Nanotechnology
- 0912 Materials Engineering
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics