Skip to main content
Journal cover image

Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment

Publication ,  Journal Article
Roebben, G; Ramirez-Garcia, S; Hackley, VA; Roesslein, M; Klaessig, F; Kestens, V; Lynch, I; Garner, CM; Rawle, A; Elder, A; Colvin, VL ...
Published in: Journal of Nanoparticle Research
July 1, 2011

The International Alliance for NanoEHS Harmonization (IANH) organises interlaboratory comparisons of methods used to study the potential biological impacts of nanomaterials. The aim of IANH is to identify and reduce or remove sources of variability and irreproducibility in existing protocols. Here, we present results of the first IANH round robin studies into methods to assess the size and surface charge of suspended nanoparticles. The test materials used (suspensions of gold, silica, polystyrene, and ceria nanoparticles, with [primary] particles sizes between 10 nm and 80 nm) were first analysed in repeatability conditions to assess the possible contribution of between-sample heterogeneity to the between-laboratory variability. Reproducibility of the selected methods was investigated in an interlaboratory comparison between ten different laboratories in the USA and Europe. Robust statistical analysis was used to evaluate within-and between-laboratory variability. It is shown that, if detailed shipping, measurement, and reporting protocols are followed, measurement of the hydrodynamic particle diameter of nanoparticles in predispersed monomodal suspensions using the dynamic light scattering method is reproducible. On the other hand, measurements of more polydisperse suspensions of nanoparticle aggregates or agglomerates were not reproducible between laboratories. Ultrasonication, which is commonly used to prepare dispersions before cell exposures, was observed to further increase variability. The variability of the zeta potential values, which were also measured, indicates the need to define better surface charge test protocols and to identify sources of variability. © Springer Science+Business Media B.V. 2010.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of Nanoparticle Research

DOI

EISSN

1572-896X

ISSN

1388-0764

Publication Date

July 1, 2011

Volume

13

Issue

7

Start / End Page

2675 / 2687

Related Subject Headings

  • Nanoscience & Nanotechnology
  • 5104 Condensed matter physics
  • 4018 Nanotechnology
  • 1007 Nanotechnology
  • 0912 Materials Engineering
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Roebben, G., Ramirez-Garcia, S., Hackley, V. A., Roesslein, M., Klaessig, F., Kestens, V., … Dawson, K. A. (2011). Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. Journal of Nanoparticle Research, 13(7), 2675–2687. https://doi.org/10.1007/s11051-011-0423-y
Roebben, G., S. Ramirez-Garcia, V. A. Hackley, M. Roesslein, F. Klaessig, V. Kestens, I. Lynch, et al. “Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment.” Journal of Nanoparticle Research 13, no. 7 (July 1, 2011): 2675–87. https://doi.org/10.1007/s11051-011-0423-y.
Roebben G, Ramirez-Garcia S, Hackley VA, Roesslein M, Klaessig F, Kestens V, et al. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. Journal of Nanoparticle Research. 2011 Jul 1;13(7):2675–87.
Roebben, G., et al. “Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment.” Journal of Nanoparticle Research, vol. 13, no. 7, July 2011, pp. 2675–87. Scopus, doi:10.1007/s11051-011-0423-y.
Roebben G, Ramirez-Garcia S, Hackley VA, Roesslein M, Klaessig F, Kestens V, Lynch I, Garner CM, Rawle A, Elder A, Colvin VL, Kreyling W, Krug HF, Lewicka ZA, McNeil S, Nel A, Patri A, Wick P, Wiesner M, Xia T, Oberdörster G, Dawson KA. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. Journal of Nanoparticle Research. 2011 Jul 1;13(7):2675–2687.
Journal cover image

Published In

Journal of Nanoparticle Research

DOI

EISSN

1572-896X

ISSN

1388-0764

Publication Date

July 1, 2011

Volume

13

Issue

7

Start / End Page

2675 / 2687

Related Subject Headings

  • Nanoscience & Nanotechnology
  • 5104 Condensed matter physics
  • 4018 Nanotechnology
  • 1007 Nanotechnology
  • 0912 Materials Engineering
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics