Critical wave speeds for a family of scalar reaction-diffusion equations
Publication
, Journal Article
Witelski, TP; Ono, K; Kaper, TJ
Published in: Applied Mathematics Letters
January 1, 2001
We study the set of traveling waves in a class of reaction-diffusion equations for the family of potentials fm(U) = 2Um(1 - U). We use perturbation methods and matched asymptotics to derive expansions for the critical wave speed that separates algebraic and exponential traveling wave front solutions for m → 2 and m → ∞. Also, an integral formulation of the problem shows that nonuniform convergence of the generalized equal area rule occurs at the critical wave speed. © 2000 Elsevier Science Ltd. All rights reserved.
Duke Scholars
Published In
Applied Mathematics Letters
DOI
ISSN
0893-9659
Publication Date
January 1, 2001
Volume
14
Issue
1
Start / End Page
65 / 73
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Witelski, T. P., Ono, K., & Kaper, T. J. (2001). Critical wave speeds for a family of scalar reaction-diffusion equations. Applied Mathematics Letters, 14(1), 65–73. https://doi.org/10.1016/S0893-9659(00)00114-2
Witelski, T. P., K. Ono, and T. J. Kaper. “Critical wave speeds for a family of scalar reaction-diffusion equations.” Applied Mathematics Letters 14, no. 1 (January 1, 2001): 65–73. https://doi.org/10.1016/S0893-9659(00)00114-2.
Witelski TP, Ono K, Kaper TJ. Critical wave speeds for a family of scalar reaction-diffusion equations. Applied Mathematics Letters. 2001 Jan 1;14(1):65–73.
Witelski, T. P., et al. “Critical wave speeds for a family of scalar reaction-diffusion equations.” Applied Mathematics Letters, vol. 14, no. 1, Jan. 2001, pp. 65–73. Scopus, doi:10.1016/S0893-9659(00)00114-2.
Witelski TP, Ono K, Kaper TJ. Critical wave speeds for a family of scalar reaction-diffusion equations. Applied Mathematics Letters. 2001 Jan 1;14(1):65–73.
Published In
Applied Mathematics Letters
DOI
ISSN
0893-9659
Publication Date
January 1, 2001
Volume
14
Issue
1
Start / End Page
65 / 73
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics