Dynamics of three-dimensional thin film rupture
We consider the problem of thin film rupture driven by van der Waals forces. A fourth-order nonlinear PDE governs the low Reynolds number lubrication model for a viscous liquid on a solid substrate. Finite-time singularities in this equation model rupture leading to formation of dry spots in the film. Our study addresses the problem of rupture in the full three-dimensional geometry. We focus on stability and selection of the dynamics determined by the initial conditions on small finite domains with planar and axisymmetric geometries. We also address the final stages of the dynamics - self-similar dynamics for point, line, and ring rupture. We will demonstrate that line and ring rupture are unstable and will generically destabilize to produce axisymmetric rupture at isolated points.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 4903 Numerical and computational mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0102 Applied Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 4903 Numerical and computational mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0102 Applied Mathematics