Equilibrium interface solutions of a degenerate singular Cahn-Hilliard equation
Publication
, Journal Article
Witelski, TP
Published in: Applied Mathematics Letters
January 1, 1998
We present an analysis of the equilibrium diffusive interfaces in a model for the interaction of layers of pure polymers. The discussion focuses on the important qualitative features of the solutions of the nonlinear singular Cahn-Hilliard equation with degenerate mobility for the Flory-Huggins-deGennes free energy model. The spatial structure of possible equilibrium phase separated solutions are found. Using phase plane analysis, we obtain heteroclinic and homoclinic degenerate weak compact-support solutions that are relevant to finite domain boundary value problems and localized impurities in infinite layers. © 1998 Elsevier Science Ltd. AU rights reserved.
Duke Scholars
Published In
Applied Mathematics Letters
DOI
ISSN
0893-9659
Publication Date
January 1, 1998
Volume
11
Issue
5
Start / End Page
127 / 133
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Witelski, T. P. (1998). Equilibrium interface solutions of a degenerate singular Cahn-Hilliard equation. Applied Mathematics Letters, 11(5), 127–133. https://doi.org/10.1016/S0893-9659(98)00092-5
Witelski, T. P. “Equilibrium interface solutions of a degenerate singular Cahn-Hilliard equation.” Applied Mathematics Letters 11, no. 5 (January 1, 1998): 127–33. https://doi.org/10.1016/S0893-9659(98)00092-5.
Witelski TP. Equilibrium interface solutions of a degenerate singular Cahn-Hilliard equation. Applied Mathematics Letters. 1998 Jan 1;11(5):127–33.
Witelski, T. P. “Equilibrium interface solutions of a degenerate singular Cahn-Hilliard equation.” Applied Mathematics Letters, vol. 11, no. 5, Jan. 1998, pp. 127–33. Scopus, doi:10.1016/S0893-9659(98)00092-5.
Witelski TP. Equilibrium interface solutions of a degenerate singular Cahn-Hilliard equation. Applied Mathematics Letters. 1998 Jan 1;11(5):127–133.
Published In
Applied Mathematics Letters
DOI
ISSN
0893-9659
Publication Date
January 1, 1998
Volume
11
Issue
5
Start / End Page
127 / 133
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics