Similarity solutions of the lubrication equation
Publication
, Journal Article
Witelski, TP
Published in: Applied Mathematics Letters
September 12, 1997
We present a method for constructing closed-form similarity solutions of the fourth-order nonlinear lubrication equation. By extending a technique used to study second-order degenerate diffusion problems, corresponding interface profiles and diffusion coefficient functions can be derived in exact form. Different classes of spreading and shrinking solutions are obtained using this approach.
Duke Scholars
Published In
Applied Mathematics Letters
DOI
ISSN
0893-9659
Publication Date
September 12, 1997
Volume
10
Issue
5
Start / End Page
107 / 113
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Witelski, T. P. (1997). Similarity solutions of the lubrication equation. Applied Mathematics Letters, 10(5), 107–113. https://doi.org/10.1016/S0893-9659(97)00092-X
Witelski, T. P. “Similarity solutions of the lubrication equation.” Applied Mathematics Letters 10, no. 5 (September 12, 1997): 107–13. https://doi.org/10.1016/S0893-9659(97)00092-X.
Witelski TP. Similarity solutions of the lubrication equation. Applied Mathematics Letters. 1997 Sep 12;10(5):107–13.
Witelski, T. P. “Similarity solutions of the lubrication equation.” Applied Mathematics Letters, vol. 10, no. 5, Sept. 1997, pp. 107–13. Scopus, doi:10.1016/S0893-9659(97)00092-X.
Witelski TP. Similarity solutions of the lubrication equation. Applied Mathematics Letters. 1997 Sep 12;10(5):107–113.
Published In
Applied Mathematics Letters
DOI
ISSN
0893-9659
Publication Date
September 12, 1997
Volume
10
Issue
5
Start / End Page
107 / 113
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics