Shocks in nonlinear diffusion
Publication
, Journal Article
Witelski, TP
Published in: Applied Mathematics Letters
January 1, 1995
Using two models that incorporate a nonlinear forward-backward heat equation, we demonstrate the existence of well-defined weak solutions containing shocks for diffusive problems. Occurrence of shocks is connected to multivalued inverse solutions and nonmonotone potential functions. Unique viscous solutions are determined from perturbation theory by matching to a shock layer condition. Results of direct numerical simulations are also discussed. © 1995.
Duke Scholars
Published In
Applied Mathematics Letters
DOI
ISSN
0893-9659
Publication Date
January 1, 1995
Volume
8
Issue
5
Start / End Page
27 / 32
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Witelski, T. P. (1995). Shocks in nonlinear diffusion. Applied Mathematics Letters, 8(5), 27–32. https://doi.org/10.1016/0893-9659(95)00062-U
Witelski, T. P. “Shocks in nonlinear diffusion.” Applied Mathematics Letters 8, no. 5 (January 1, 1995): 27–32. https://doi.org/10.1016/0893-9659(95)00062-U.
Witelski TP. Shocks in nonlinear diffusion. Applied Mathematics Letters. 1995 Jan 1;8(5):27–32.
Witelski, T. P. “Shocks in nonlinear diffusion.” Applied Mathematics Letters, vol. 8, no. 5, Jan. 1995, pp. 27–32. Scopus, doi:10.1016/0893-9659(95)00062-U.
Witelski TP. Shocks in nonlinear diffusion. Applied Mathematics Letters. 1995 Jan 1;8(5):27–32.
Published In
Applied Mathematics Letters
DOI
ISSN
0893-9659
Publication Date
January 1, 1995
Volume
8
Issue
5
Start / End Page
27 / 32
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics