Skip to main content
Journal cover image

Shocks in nonlinear diffusion

Publication ,  Journal Article
Witelski, TP
Published in: Applied Mathematics Letters
January 1, 1995

Using two models that incorporate a nonlinear forward-backward heat equation, we demonstrate the existence of well-defined weak solutions containing shocks for diffusive problems. Occurrence of shocks is connected to multivalued inverse solutions and nonmonotone potential functions. Unique viscous solutions are determined from perturbation theory by matching to a shock layer condition. Results of direct numerical simulations are also discussed. © 1995.

Duke Scholars

Published In

Applied Mathematics Letters

DOI

ISSN

0893-9659

Publication Date

January 1, 1995

Volume

8

Issue

5

Start / End Page

27 / 32

Related Subject Headings

  • Applied Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Witelski, T. P. (1995). Shocks in nonlinear diffusion. Applied Mathematics Letters, 8(5), 27–32. https://doi.org/10.1016/0893-9659(95)00062-U
Witelski, T. P. “Shocks in nonlinear diffusion.” Applied Mathematics Letters 8, no. 5 (January 1, 1995): 27–32. https://doi.org/10.1016/0893-9659(95)00062-U.
Witelski TP. Shocks in nonlinear diffusion. Applied Mathematics Letters. 1995 Jan 1;8(5):27–32.
Witelski, T. P. “Shocks in nonlinear diffusion.” Applied Mathematics Letters, vol. 8, no. 5, Jan. 1995, pp. 27–32. Scopus, doi:10.1016/0893-9659(95)00062-U.
Witelski TP. Shocks in nonlinear diffusion. Applied Mathematics Letters. 1995 Jan 1;8(5):27–32.
Journal cover image

Published In

Applied Mathematics Letters

DOI

ISSN

0893-9659

Publication Date

January 1, 1995

Volume

8

Issue

5

Start / End Page

27 / 32

Related Subject Headings

  • Applied Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics