Second-Order Perturbation Theory with Fractional Charges and Fractional Spins.
In this work the behavior of MP2 for fractional occupations is investigated. The consideration of fractional charge behavior gives a simple derivation of an expression for the chemical potential (or the derivative of energy with respect to the number of electrons) of MP2. A generalized optimized effective potential formalism (OEP) has been developed in which the OEP is a nonlocal potential, which can be applied to explicit functionals of the orbitals and eigenvalues and also facilitates the evaluation of the chemical potential. The MP2 derivative improves upon the corresponding Koopmans' theorem in Hartree-Fock theory for the ionization energy and also gives a good estimate of the electron affinity. In strongly correlated systems with degeneracies and fractional spins, MP2 diverges, and another corrected second-order perturbative method ameliorates this failure for the energy but still does not recapture the correct behavior for the energy derivatives that yield the gap. Overall we present a view of wave function based methods and their behavior for fractional charges and spins that offers insight into the application of these methods to challenging chemical problems.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 0803 Computer Software
- 0601 Biochemistry and Cell Biology
- 0307 Theoretical and Computational Chemistry
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 0803 Computer Software
- 0601 Biochemistry and Cell Biology
- 0307 Theoretical and Computational Chemistry