
Sparse modeling of human actions from motion imagery
An efficient sparse modeling pipeline for the classification of human actions from video is here developed. Spatio-temporal features that characterize local changes in the image are first extracted. This is followed by the learning of a class-structured dictionary encoding the individual actions of interest. Classification is then based on reconstruction, where the label assigned to each video comes from the optimal sparse linear combination of the learned basis vectors (action primitives) representing the actions. A low computational cost deep-layer model learning the inter-class correlations of the data is added for increasing discriminative power. In spite of its simplicity and low computational cost, the method outperforms previously reported results for virtually all standard datasets. © 2012 Springer Science+Business Media, LLC (outside the USA).
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4611 Machine learning
- 4607 Graphics, augmented reality and games
- 4603 Computer vision and multimedia computation
- 0801 Artificial Intelligence and Image Processing
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4611 Machine learning
- 4607 Graphics, augmented reality and games
- 4603 Computer vision and multimedia computation
- 0801 Artificial Intelligence and Image Processing