Multiscale representation and segmentation of hyperspectral imagery using geometric partial differential equations and algebraic multigrid methods
A fast algorithm for multiscale representation and segmentation of hyperspectral imagery is introduced in this paper. The multiscale/scale-space representation is obtained by solving a nonlinear diffusion partial differential equation (PDE) for vector-valued images. We use algebraic multigrid techniques to obtain a fast and scalable solution of the PDE and to segment the hyperspectral image following the intrinsic multigrid structure. We test our algorithm on four standard hyperspectral images that represent different environments commonly found in remote sensing applications: agricultural, urban, mining, and marine. The experimental results show that the segmented images lead to better classification than using the original data directly, in spite of the use of simple similarity metrics and piecewise constant approximations obtained from the segmentation maps. © 2006 IEEE.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Geological & Geomatics Engineering
- 40 Engineering
- 37 Earth sciences
- 0909 Geomatic Engineering
- 0906 Electrical and Electronic Engineering
- 0404 Geophysics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Geological & Geomatics Engineering
- 40 Engineering
- 37 Earth sciences
- 0909 Geomatic Engineering
- 0906 Electrical and Electronic Engineering
- 0404 Geophysics