
Diffusion of general data on non-flat manifolds via harmonic maps theory: The direction diffusion case
In a number of disciplines, directional data provides a fundamental source of information. A novel framework for isotropic and anisotropic diffusion of directions is presented in this paper. The framework can be applied both to denoise directional data and to obtain multiscale representations of it. The basic idea is to apply and extend results from the theory of harmonic maps, and in particular, harmonic maps in liquid crystals. This theory deals with the regularization of vectorial data, while satisfying the intrinsic unit norm constraint of directional data. We show the corresponding variational and partial differential equations formulations for isotropic diffusion, obtained from an L
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4611 Machine learning
- 4607 Graphics, augmented reality and games
- 4603 Computer vision and multimedia computation
- 0801 Artificial Intelligence and Image Processing
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 4611 Machine learning
- 4607 Graphics, augmented reality and games
- 4603 Computer vision and multimedia computation
- 0801 Artificial Intelligence and Image Processing