
Efficient Gaussian process regression for large datasets
Gaussian processes are widely used in nonparametric regression, classification and spatiotemporal modelling, facilitated in part by a rich literature on their theoretical properties. However, one of their practical limitations is expensive computation, typically on the order of n3 where n is the number of data points, in performing the necessary matrix inversions. For large datasets, storage and processing also lead to computational bottlenecks, and numerical stability of the estimates and predicted values degrades with increasing n. Various methods have been proposed to address these problems, including predictive processes in spatial data analysis and the subset-of-regressors technique in machine learning. The idea underlying these approaches is to use a subset of the data, but this raises questions concerning sensitivity to the choice of subset and limitations in estimating fine-scale structure in regions that are not well covered by the subset. Motivated by the literature on compressive sensing, we propose an alternative approach that involves linear projection of all the data points onto a lower-dimensional subspace. We demonstrate the superiority of this approach from a theoretical perspective and through simulated and real data examples. © 2012 Biometrika Trust.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics