Skip to main content

Integrated microsphere arrays: Light focusing and propagation effects

Publication ,  Conference
Darafsheh, A; Kerr, MD; Allen, KW; Fried, NM; Antoszyk, AN; Ying, HS; Astratov, VN
Published in: Proceedings of SPIE - The International Society for Optical Engineering
May 3, 2010

Integration of microspheres inside micro-capillaries or hollow waveguides may allow development of compact focusing tools for a variety of biomedical and photonics applications. However, problems associated with developing focusing microprobes involve the multimodal structure of noncollimated beams delivered by fibers and waveguides. By using numerical ray tracing, it is shown that serial spherical microlenses filter out spatially periodic modes which can be used for obtaining tightly focused beams. Experimental studies are performed for spheres with sizes from 10 to 300 μm with different indices of refraction ranging from 1.47 to 1.9. The chains were assembled inside plastic tubing with bore sizes matching the size of the spheres. By using high index spheres, it is demonstrated that these structures are capable of focusing light in contact with tissue. The beam attenuation properties of such chains are found to be in good agreement with numerical modeling results. Potential applications of integrated microsphere arrays include ultra-precise intraocular and neurosurgical laser procedures, photoporation of cells, and coupling of light into photonic microstructures. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Duke Scholars

Published In

Proceedings of SPIE - The International Society for Optical Engineering

DOI

ISSN

0277-786X

Publication Date

May 3, 2010

Volume

7605

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 4009 Electronics, sensors and digital hardware
  • 4006 Communications engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Darafsheh, A., Kerr, M. D., Allen, K. W., Fried, N. M., Antoszyk, A. N., Ying, H. S., & Astratov, V. N. (2010). Integrated microsphere arrays: Light focusing and propagation effects. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 7605). https://doi.org/10.1117/12.845791
Darafsheh, A., M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov. “Integrated microsphere arrays: Light focusing and propagation effects.” In Proceedings of SPIE - The International Society for Optical Engineering, Vol. 7605, 2010. https://doi.org/10.1117/12.845791.
Darafsheh A, Kerr MD, Allen KW, Fried NM, Antoszyk AN, Ying HS, et al. Integrated microsphere arrays: Light focusing and propagation effects. In: Proceedings of SPIE - The International Society for Optical Engineering. 2010.
Darafsheh, A., et al. “Integrated microsphere arrays: Light focusing and propagation effects.” Proceedings of SPIE - The International Society for Optical Engineering, vol. 7605, 2010. Scopus, doi:10.1117/12.845791.
Darafsheh A, Kerr MD, Allen KW, Fried NM, Antoszyk AN, Ying HS, Astratov VN. Integrated microsphere arrays: Light focusing and propagation effects. Proceedings of SPIE - The International Society for Optical Engineering. 2010.

Published In

Proceedings of SPIE - The International Society for Optical Engineering

DOI

ISSN

0277-786X

Publication Date

May 3, 2010

Volume

7605

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 4009 Electronics, sensors and digital hardware
  • 4006 Communications engineering