Skip to main content
Journal cover image

C-13 discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions

Publication ,  Journal Article
Laws, EA; Popp, BN; Cassar, N; Tanimoto, J
Published in: Functional Plant Biology
March 20, 2002

The isotopic composition of organic carbon buried in marine sediments is an appealing proxy for palaeo CO2 concentrations due to the well-documented effect of CO2 concentrations on carbon fractionation by phytoplankton. However, a number of factors, in addition to CO2 concentrations, influence this fractionation. Included among these factors are cell geometry, in particular surface/volume ratios, growth rate, and the presence of CO2 concentrating mechanisms. Other potentially confounding factors are calcification, diagenesis, and the nature of the growth-rate-limiting factor, e.g. light vs nutrients. Because of these confounding factors, palaeoreconstructions based on the isotopic composition of organic carbon (δ13C) will almost certainly have to be based on the isotopic signatures of organic compounds that can be associated with a single species, or group of physiologically similar species. Long-chain alkenones produced by certain species of coccolithophores may provide a suitable diagnostic marker. By combining the δ13C of the alkenone carbon with the δ13C of coccolith carbon and the Sr/Ca ratio of the coccoliths, it is possible to calculate the extent of carbon fractionation (εp) and estimate growth rates. However, active transport of inorganic carbon tends to make εp insensitive to CO2 concentrations when the ratio of growth rate to CO2 concentration exceeds 0.285/rkg mol–1d–1, where r is the effective spherical radius of the cell in microns. Palaeo CO2 concentrations calculated from alkenone and coccolith δ13C data capture the gross features of CO2 concentrations in the Vostok ice core, but explain only 30–35% of the variance in the latter. The absence of a higher correlation may in part reflect the impact of active transport, particularly during glacial times. The impact of active transport may have been less severe prior to the Pleistocene, since CO2 concentrations are believed to have been higher than present-day values during most of Phanerozoic time.

Duke Scholars

Published In

Functional Plant Biology

DOI

ISSN

1445-4416

Publication Date

March 20, 2002

Volume

29

Issue

3

Start / End Page

323 / 333

Publisher

CSIRO Publishing

Related Subject Headings

  • Plant Biology & Botany
  • 3108 Plant biology
  • 3103 Ecology
  • 0607 Plant Biology
  • 0602 Ecology
  • 0601 Biochemistry and Cell Biology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Laws, E. A., Popp, B. N., Cassar, N., & Tanimoto, J. (2002). C-13 discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions. Functional Plant Biology, 29(3), 323–333. https://doi.org/10.1071/PP01183
Laws, E. A., B. N. Popp, N. Cassar, and J. Tanimoto. “C-13 discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions.” Functional Plant Biology 29, no. 3 (March 20, 2002): 323–33. https://doi.org/10.1071/PP01183.
Laws, E. A., et al. “C-13 discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions.” Functional Plant Biology, vol. 29, no. 3, CSIRO Publishing, Mar. 2002, pp. 323–33. Manual, doi:10.1071/PP01183.
Laws EA, Popp BN, Cassar N, Tanimoto J. C-13 discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions. Functional Plant Biology. CSIRO Publishing; 2002 Mar 20;29(3):323–333.
Journal cover image

Published In

Functional Plant Biology

DOI

ISSN

1445-4416

Publication Date

March 20, 2002

Volume

29

Issue

3

Start / End Page

323 / 333

Publisher

CSIRO Publishing

Related Subject Headings

  • Plant Biology & Botany
  • 3108 Plant biology
  • 3103 Ecology
  • 0607 Plant Biology
  • 0602 Ecology
  • 0601 Biochemistry and Cell Biology