
The korteweg‐de vries equation with small dispersion: Higher order lax‐levermore theory
Publication
, Journal Article
Venakides, S
Published in: Communications on Pure and Applied Mathematics
January 1, 1990
Duke Scholars
Published In
Communications on Pure and Applied Mathematics
DOI
EISSN
1097-0312
ISSN
0010-3640
Publication Date
January 1, 1990
Volume
43
Issue
3
Start / End Page
335 / 361
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Venakides, S. (1990). The korteweg‐de vries equation with small dispersion: Higher order lax‐levermore theory. Communications on Pure and Applied Mathematics, 43(3), 335–361. https://doi.org/10.1002/cpa.3160430303
Venakides, S. “The korteweg‐de vries equation with small dispersion: Higher order lax‐levermore theory.” Communications on Pure and Applied Mathematics 43, no. 3 (January 1, 1990): 335–61. https://doi.org/10.1002/cpa.3160430303.
Venakides S. The korteweg‐de vries equation with small dispersion: Higher order lax‐levermore theory. Communications on Pure and Applied Mathematics. 1990 Jan 1;43(3):335–61.
Venakides, S. “The korteweg‐de vries equation with small dispersion: Higher order lax‐levermore theory.” Communications on Pure and Applied Mathematics, vol. 43, no. 3, Jan. 1990, pp. 335–61. Scopus, doi:10.1002/cpa.3160430303.
Venakides S. The korteweg‐de vries equation with small dispersion: Higher order lax‐levermore theory. Communications on Pure and Applied Mathematics. 1990 Jan 1;43(3):335–361.

Published In
Communications on Pure and Applied Mathematics
DOI
EISSN
1097-0312
ISSN
0010-3640
Publication Date
January 1, 1990
Volume
43
Issue
3
Start / End Page
335 / 361
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics