Skip to main content
Journal cover image

Inhibiting the intrinsic pathway of coagulation with a factor XII-targeting RNA aptamer.

Publication ,  Journal Article
Woodruff, RS; Xu, Y; Layzer, J; Wu, W; Ogletree, ML; Sullenger, BA
Published in: J Thromb Haemost
July 2013

BACKGROUND: Exposure of the plasma protein factor XII (FXII) to an anionic surface generates activated FXII that not only triggers the intrinsic pathway of blood coagulation through the activation of FXI but also mediates various vascular responses through activation of the plasma contact system. While deficiencies of FXII are not associated with excessive bleeding, thrombosis models in factor-deficient animals have suggested that this protein contributes to stable thrombus formation. Therefore, FXII has emerged as an attractive therapeutic target to treat or prevent pathological thrombosis formation without increasing the risk for hemorrhage. OBJECTIVES: Using an in vitro directed evolution and chemical biology approach, we sought to isolate a nuclease-resistant RNA aptamer that binds specifically to FXII and directly inhibits FXII coagulant function. METHODS AND RESULTS: We describe the isolation and characterization of a high-affinity RNA aptamer targeting FXII/activated FXII (FXIIa) that dose dependently prolongs fibrin clot formation and thrombin generation in clinical coagulation assays. This aptamer functions as a potent anticoagulant by inhibiting the autoactivation of FXII, as well as inhibiting intrinsic pathway activation (FXI activation). However, the aptamer does not affect the FXIIa-mediated activation of the proinflammatory kallikrein-kinin system (plasma kallikrein activation). CONCLUSIONS: We have generated a specific and potent FXII/FXIIa aptamer anticoagulant that offers targeted inhibition of discrete macromolecular interactions involved in the activation of the intrinsic pathway of blood coagulation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Thromb Haemost

DOI

EISSN

1538-7836

Publication Date

July 2013

Volume

11

Issue

7

Start / End Page

1364 / 1373

Location

England

Related Subject Headings

  • Thrombin
  • SELEX Aptamer Technique
  • Kinetics
  • Humans
  • Fibrin
  • Factor XIIa
  • Factor XII
  • Dose-Response Relationship, Drug
  • Cardiovascular System & Hematology
  • Blood Coagulation Tests
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Woodruff, R. S., Xu, Y., Layzer, J., Wu, W., Ogletree, M. L., & Sullenger, B. A. (2013). Inhibiting the intrinsic pathway of coagulation with a factor XII-targeting RNA aptamer. J Thromb Haemost, 11(7), 1364–1373. https://doi.org/10.1111/jth.12302
Woodruff, R. S., Y. Xu, J. Layzer, W. Wu, M. L. Ogletree, and B. A. Sullenger. “Inhibiting the intrinsic pathway of coagulation with a factor XII-targeting RNA aptamer.J Thromb Haemost 11, no. 7 (July 2013): 1364–73. https://doi.org/10.1111/jth.12302.
Woodruff RS, Xu Y, Layzer J, Wu W, Ogletree ML, Sullenger BA. Inhibiting the intrinsic pathway of coagulation with a factor XII-targeting RNA aptamer. J Thromb Haemost. 2013 Jul;11(7):1364–73.
Woodruff, R. S., et al. “Inhibiting the intrinsic pathway of coagulation with a factor XII-targeting RNA aptamer.J Thromb Haemost, vol. 11, no. 7, July 2013, pp. 1364–73. Pubmed, doi:10.1111/jth.12302.
Woodruff RS, Xu Y, Layzer J, Wu W, Ogletree ML, Sullenger BA. Inhibiting the intrinsic pathway of coagulation with a factor XII-targeting RNA aptamer. J Thromb Haemost. 2013 Jul;11(7):1364–1373.
Journal cover image

Published In

J Thromb Haemost

DOI

EISSN

1538-7836

Publication Date

July 2013

Volume

11

Issue

7

Start / End Page

1364 / 1373

Location

England

Related Subject Headings

  • Thrombin
  • SELEX Aptamer Technique
  • Kinetics
  • Humans
  • Fibrin
  • Factor XIIa
  • Factor XII
  • Dose-Response Relationship, Drug
  • Cardiovascular System & Hematology
  • Blood Coagulation Tests