
Inelastic dark matter at DAMA, CDMS and future experiments
The DAMA annual modulation signature, interpreted as evidence for a spin-independent WIMP coupling, seems in conflict with null results from CDMS. However, in models of "inelastic dark matter", the experiments are compatible. Inelastic dark matter can arise in supersymmetric theories as the real component of a sneutrino mixed with a singlet scalar. In contrast with ordinary sneutrino dark matter, such particles can satisfy all experimental constraints while giving the appropriate relic abundance. We discuss the modifications to the signal seen at DAMA, in particular noting the strong suppression of low energy events in both modulated and unmodulated components. We discuss future experiments, with emphasis on distinguishing inelastic dark matter from ordinary dark matter, and stressing the significance of experiments with heavy target nuclei, such as xenon and tungsten.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Start / End Page
Citation
