Skip to main content
Journal cover image

Design and validation of a dynamic cell-culture system for bone biology research and exogenous tissue-engineering applications.

Publication ,  Journal Article
Allori, AC; Davidson, EH; Reformat, DD; Sailon, AM; Freeman, J; Vaughan, A; Wootton, D; Clark, E; Ricci, JL; Warren, SM
Published in: J Tissue Eng Regen Med
October 2016

Bone lacunocanalicular fluid flow ensures chemotransportation and provides a mechanical stimulus to cells. Traditional static cell-culture methods are ill-suited to study the intricacies of bone biology because they ignore the three-dimensionality of meaningful cellular networks and the lacunocanalicular system; furthermore, reliance on diffusion alone for nutrient supply and waste product removal effectively limits scaffolds to 2-3 mm thickness. In this project, a flow-perfusion system was custom-designed to overcome these limitations: eight adaptable chambers housed cylindrical cell-seeded scaffolds measuring 12 or 24 mm in diameter and 1-10 mm in thickness. The porous scaffolds were manufactured using a three-dimensional (3D) periodic microprinting process and were composed of hydroxyapatite/tricalcium phosphate with variable thicknesses, strut sizes, pore sizes and structural configurations. A multi-channel peristaltic pump drew medium from parallel reservoirs and perfused it through each scaffold at a programmable rate. Hermetically sealed valves permitted sampling or replacement of medium. A gas-permeable membrane allowed for gas exchange. Tubing was selected to withstand continuous perfusion for > 2 months without leakage. Computational modelling was performed to assess the adequacy of oxygen supply and the range of fluid shear stress in the bioreactor-scaffold system, using 12 × 6 mm scaffolds, and these models suggested scaffold design modifications that improved oxygen delivery while enhancing physiological shear stress. This system may prove useful in studying complex 3D bone biology and in developing strategies for engineering thick 3D bone constructs. Copyright © 2013 John Wiley & Sons, Ltd.

Duke Scholars

Published In

J Tissue Eng Regen Med

DOI

EISSN

1932-7005

Publication Date

October 2016

Volume

10

Issue

10

Start / End Page

E327 / E336

Location

England

Related Subject Headings

  • Tissue Scaffolds
  • Tissue Engineering
  • Mice
  • Mesenchymal Stem Cells
  • Humans
  • Durapatite
  • Cell Line
  • Cell Culture Techniques
  • Calcium Phosphates
  • Bone and Bones
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Allori, A. C., Davidson, E. H., Reformat, D. D., Sailon, A. M., Freeman, J., Vaughan, A., … Warren, S. M. (2016). Design and validation of a dynamic cell-culture system for bone biology research and exogenous tissue-engineering applications. J Tissue Eng Regen Med, 10(10), E327–E336. https://doi.org/10.1002/term.1810
Allori, Alexander C., Edward H. Davidson, Derek D. Reformat, Alexander M. Sailon, James Freeman, Adam Vaughan, David Wootton, Elizabeth Clark, John L. Ricci, and Stephen M. Warren. “Design and validation of a dynamic cell-culture system for bone biology research and exogenous tissue-engineering applications.J Tissue Eng Regen Med 10, no. 10 (October 2016): E327–36. https://doi.org/10.1002/term.1810.
Allori AC, Davidson EH, Reformat DD, Sailon AM, Freeman J, Vaughan A, et al. Design and validation of a dynamic cell-culture system for bone biology research and exogenous tissue-engineering applications. J Tissue Eng Regen Med. 2016 Oct;10(10):E327–36.
Allori, Alexander C., et al. “Design and validation of a dynamic cell-culture system for bone biology research and exogenous tissue-engineering applications.J Tissue Eng Regen Med, vol. 10, no. 10, Oct. 2016, pp. E327–36. Pubmed, doi:10.1002/term.1810.
Allori AC, Davidson EH, Reformat DD, Sailon AM, Freeman J, Vaughan A, Wootton D, Clark E, Ricci JL, Warren SM. Design and validation of a dynamic cell-culture system for bone biology research and exogenous tissue-engineering applications. J Tissue Eng Regen Med. 2016 Oct;10(10):E327–E336.
Journal cover image

Published In

J Tissue Eng Regen Med

DOI

EISSN

1932-7005

Publication Date

October 2016

Volume

10

Issue

10

Start / End Page

E327 / E336

Location

England

Related Subject Headings

  • Tissue Scaffolds
  • Tissue Engineering
  • Mice
  • Mesenchymal Stem Cells
  • Humans
  • Durapatite
  • Cell Line
  • Cell Culture Techniques
  • Calcium Phosphates
  • Bone and Bones