Skip to main content

Tree height integrated into pantropical forest biomass estimates

Publication ,  Journal Article
Feldpausch, TR; Lloyd, J; Lewis, SL; Brienen, RJW; Gloor, M; Monteagudo Mendoza, A; Lopez-Gonzalez, G; Banin, L; Abu Salim, K; Affum-Baffoe, K ...
Published in: Biogeosciences
January 1, 2012

Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: ; 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? ; 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? ; 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? ; The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha-1 (range 6.6 to 112.4) to 8.0 Mg ha-1 (-2.5 to 23.0). For all plots, aboveground live biomass was -52.2 Mg ha-1 (-82.0 to -20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31-39 bootstrapped 95% CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation. © 2012 Author(s).

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biogeosciences

DOI

EISSN

1726-4189

ISSN

1726-4170

Publication Date

January 1, 2012

Volume

9

Issue

8

Start / End Page

3381 / 3403

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 4104 Environmental management
  • 3709 Physical geography and environmental geoscience
  • 3103 Ecology
  • 06 Biological Sciences
  • 05 Environmental Sciences
  • 04 Earth Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo Mendoza, A., … Phillips, O. L. (2012). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9(8), 3381–3403. https://doi.org/10.5194/bg-9-3381-2012
Feldpausch, T. R., J. Lloyd, S. L. Lewis, R. J. W. Brienen, M. Gloor, A. Monteagudo Mendoza, G. Lopez-Gonzalez, et al. “Tree height integrated into pantropical forest biomass estimates.” Biogeosciences 9, no. 8 (January 1, 2012): 3381–3403. https://doi.org/10.5194/bg-9-3381-2012.
Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Monteagudo Mendoza A, et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences. 2012 Jan 1;9(8):3381–403.
Feldpausch, T. R., et al. “Tree height integrated into pantropical forest biomass estimates.” Biogeosciences, vol. 9, no. 8, Jan. 2012, pp. 3381–403. Scopus, doi:10.5194/bg-9-3381-2012.
Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, Banin L, Abu Salim K, Affum-Baffoe K, Alexiades M, Almeida S, Amaral I, Andrade A, Aragão LEOC, Araujo Murakami A, Arets EJM, Arroyo L, Aymard C. GA, Baker TR, Bánki OS, Berry NJ, Cardozo N, Chave J, Comiskey JA, Alvarez E, De Oliveira A, Di Fiore A, Djagbletey G, Domingues TF, Erwin TL, Fearnside PM, França MB, Freitas MA, Higuchi N, Honorio C. E, Iida Y, Jiménez E, Kassim AR, Killeen TJ, Laurance WF, Lovett JC, Malhi Y, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Mendoza C, Metcalfe DJ, Mitchard ETA, Neill DA, Nelson BW, Nilus R, Nogueira EM, Parada A, S.-H. Peh K, Pena Cruz A, Peñuela MC, Pitman NCA, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Reitsma JM, Rudas A, Saiz G, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Sonké B, Stropp J, Taedoumg HE, Tan S, Ter Steege H, Terborgh J, Torello-Raventos M, Van Der Heijden GMF, Vásquez R, Vilanova E, Vos VA, White L, Willcock S, Woell H, Phillips OL. Tree height integrated into pantropical forest biomass estimates. Biogeosciences. 2012 Jan 1;9(8):3381–3403.

Published In

Biogeosciences

DOI

EISSN

1726-4189

ISSN

1726-4170

Publication Date

January 1, 2012

Volume

9

Issue

8

Start / End Page

3381 / 3403

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 4104 Environmental management
  • 3709 Physical geography and environmental geoscience
  • 3103 Ecology
  • 06 Biological Sciences
  • 05 Environmental Sciences
  • 04 Earth Sciences