Co-spectrum and mean velocity in turbulent boundary layers
Connections are explored between spectral descriptions of turbulence and the mean velocity profile in the equilibrium layer of wall-bounded flows using a modeled budget for the co-spectral density. Using a standard model for the wall normal velocity variance and a Rotta-like return-to-isotropy closure for the pressure-strain effects, the co-spectrum is derived. The approach establishes a relation between the von Kármán (κ), one-dimensional Kolmogorov (CK'), and Rotta (A) constants, namely, κ=(4A/7CK')-3/4. Depending on the choices made about small-scale intermittency corrections, the logarithmic mean velocity profile or a power-law profile with an exponent that depends on the intermittency correction are derived thereby offering a new perspective on a long standing debate. © 2013 AIP Publishing LLC.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Fluids & Plasmas
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Fluids & Plasmas
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences