Skip to main content
Journal cover image

Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: enhanced survival and mutagenesis.

Publication ,  Journal Article
Bae, D; Camilli, TC; Chun, G; Lal, M; Wright, K; O'Brien, TJ; Patierno, SR; Ceryak, S
Published in: Mutat Res
January 15, 2009

Although the consequences of genotoxic injury include cell cycle arrest and apoptosis, cell survival responses after genotoxic injury can produce intrinsic death-resistance and contribute to the development of a transformed phenotype. Protein tyrosine phosphatases (PTPs) are integral components of key survival pathways, and are responsible for their inactivation, while PTP inhibition is often associated with enhanced cell proliferation. Our aim was to elucidate signaling events that modulate cell survival after genotoxin exposure. Diploid human lung fibroblasts (HLF) were treated with Cr(VI) (as Na(2)CrO(4)), the soluble oxyanionic dissolution product of certain particulate chromates, which are well-documented human respiratory carcinogens. In vitro soluble Cr(VI) induces a wide spectrum of DNA damage, in both the presence and absence of a broad-range PTP inhibitor, sodium orthovanadate (SOV). Notably, SOV abrogated Cr(VI)-induced clonogenic lethality. The enhanced survival of Cr(VI)-exposed cells after SOV treatment was predominantly due to a bypass of cell cycle arrest, as there was no effect of the PTP inhibitor on Cr-induced apoptosis. Moreover, the SOV effect was not due to decreased Cr uptake as evidenced by unchanged Cr-DNA adduct burden. Additionally, the bypass of Cr-induced growth arrest by SOV was accompanied by a decrease in Cr(VI)-induced expression of cell cycle inhibiting genes, and an increase in Cr(VI)-induced expression of cell cycle promoting genes. Importantly, SOV resulted in an increase in forward mutations at the HPRT locus, supporting the hypothesis that PTP inhibition in the presence of certain types of DNA damage may lead to increased genomic instability, via bypass of cell cycle checkpoints.

Duke Scholars

Published In

Mutat Res

DOI

ISSN

0027-5107

Publication Date

January 15, 2009

Volume

660

Issue

1-2

Start / End Page

40 / 46

Location

Netherlands

Related Subject Headings

  • Protein Tyrosine Phosphatases
  • Oncology & Carcinogenesis
  • Oligonucleotide Array Sequence Analysis
  • Mutagenesis
  • Humans
  • Enzyme Inhibitors
  • Chromium
  • Cell Survival
  • Cell Line
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Bae, D., Camilli, T. C., Chun, G., Lal, M., Wright, K., O’Brien, T. J., … Ceryak, S. (2009). Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: enhanced survival and mutagenesis. Mutat Res, 660(1–2), 40–46. https://doi.org/10.1016/j.mrfmmm.2008.10.006
Bae, Dongsoon, Tura C. Camilli, Gina Chun, Madhu Lal, Kristen Wright, Travis J. O’Brien, Steven R. Patierno, and Susan Ceryak. “Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: enhanced survival and mutagenesis.Mutat Res 660, no. 1–2 (January 15, 2009): 40–46. https://doi.org/10.1016/j.mrfmmm.2008.10.006.
Bae D, Camilli TC, Chun G, Lal M, Wright K, O’Brien TJ, et al. Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: enhanced survival and mutagenesis. Mutat Res. 2009 Jan 15;660(1–2):40–6.
Bae, Dongsoon, et al. “Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: enhanced survival and mutagenesis.Mutat Res, vol. 660, no. 1–2, Jan. 2009, pp. 40–46. Pubmed, doi:10.1016/j.mrfmmm.2008.10.006.
Bae D, Camilli TC, Chun G, Lal M, Wright K, O’Brien TJ, Patierno SR, Ceryak S. Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: enhanced survival and mutagenesis. Mutat Res. 2009 Jan 15;660(1–2):40–46.
Journal cover image

Published In

Mutat Res

DOI

ISSN

0027-5107

Publication Date

January 15, 2009

Volume

660

Issue

1-2

Start / End Page

40 / 46

Location

Netherlands

Related Subject Headings

  • Protein Tyrosine Phosphatases
  • Oncology & Carcinogenesis
  • Oligonucleotide Array Sequence Analysis
  • Mutagenesis
  • Humans
  • Enzyme Inhibitors
  • Chromium
  • Cell Survival
  • Cell Line