Integrative pathway analysis using Graph-Based learning with applications to TCGA colon and ovarian data

Published

Journal Article

Recent method development has included multi-dimensional genomic data algorithms because such methods have more accurately pre-dicted clinical phenotypes related to disease. This study is the first to conduct an integrative genomic pathway-based analysis with a graph-based learning algorithm. The methodology of this analysis, graph-based semi-supervised learning, detects pathways that improve prediction of a dichotomous variable, which in this study is cancer stage. This analysis integrates genome-level gene expression, methylation, and single nucleotide polymorphism (SNP) data in serous cystadenocarcinoma (OV) and colon adenocarcinoma (COAD). The top 10 ranked predictive pathways in COAD and OV were biologically relevant to their respective cancer stages and significantly enhanced prediction accuracy and area under the ROC curve (AUC) when compared to single data-type analyses. This method is an effective way to simultaneously predict binary clinical phenotypes and discover their biological mechanisms. © the authors, publisher and licensee Libertas Academica Limited.

Full Text

Duke Authors

Cited Authors

  • Dellinger, AE; Nixon, AB; Pang, H

Published Date

  • July 28, 2014

Published In

Volume / Issue

  • 13 / SUPPL.4

Electronic International Standard Serial Number (EISSN)

  • 1176-9351

Digital Object Identifier (DOI)

  • 10.4137/CIN.S13634

Citation Source

  • Scopus