Predictive performance of a gentamicin population pharmacokinetic model in neonates receiving full-body hypothermia.

Published

Journal Article

BACKGROUND: Population pharmacokinetic (popPK) models derived from small pharmacokinetics (PK) studies in neonates are often underpowered to detect clinically important characteristics that drive dosing. External validation of such models is crucial. In this study, the predictive performance of a gentamicin popPK model in neonates receiving hypothermia was evaluated. METHODS: A previously published gentamicin popPK model was developed in neonates with hypoxic ischemic encephalopathy undergoing hypothermia using a retrospective single-institution (University of California-San Francisco) data set. The predictive performance of this model was evaluated in an external retrospective data set from the University of California-San Francisco (validation A) and another from Duke University (validation B). Both institutions used the same hypothermia protocol and collected similar clinical and PK data. Gentamicin dosing and samples were collected per routine care. Predictive performance was evaluated by quantifying the accuracy and precision of model predictions and using simulation-based diagnostics to detect bias in predictions. RESULTS: Forty-one neonates (n = 18 validation A; n = 23 validation B) with median (range) gestational age of 40 weeks (33-42) and birth weight of 3.3 kg (1.9-4.6) and 76 samples (55% troughs, 33% and 28% drawn at 24 and 36 hours after dose, respectively) were analyzed. The model adequately predicted gentamicin concentrations from the same institution (validation A; median average fold error = 1.1 and numerical prediction distribution error P > 0.05) but underpredicted concentrations from the outside institution (validation B; median average fold error = 0.6 and numerical prediction distribution error P < 0.05). CONCLUSIONS: The model demonstrated adequate predictive performance for an external data set in the same institution but not from an outside institution. Larger sample sizes, use of data from multiple institutions, and external evaluation in development of popPK models in neonates may improve generalizability of dosing recommendations arising from single-institution studies.

Full Text

Duke Authors

Cited Authors

  • Sampson, MR; Frymoyer, A; Rattray, B; Cotten, CM; Smith, PB; Capparelli, E; Bonifacio, SL; Cohen-Wolkowiez, M

Published Date

  • October 2014

Published In

Volume / Issue

  • 36 / 5

Start / End Page

  • 584 - 589

PubMed ID

  • 25225917

Pubmed Central ID

  • 25225917

Electronic International Standard Serial Number (EISSN)

  • 1536-3694

Digital Object Identifier (DOI)

  • 10.1097/FTD.0000000000000056

Language

  • eng

Conference Location

  • United States