Codelivery of Envelope Protein in Alum with MVA Vaccine Induces CXCR3-Biased CXCR5+ and CXCR5- CD4 T Cell Responses in Rhesus Macaques.

Journal Article

The goal of an HIV vaccine is to generate robust and durable protective Ab. Vital to this goal is the induction of CD4(+) T follicular helper (TFH) cells. However, very little is known about the TFH response to HIV vaccination and its relative contribution to magnitude and quality of vaccine-elicited Ab titers. In this study, we investigated these questions in the context of a DNA/modified vaccinia virus Ankara SIV vaccine with and without gp140 boost in aluminum hydroxide in rhesus macaques. In addition, we determined the frequency of vaccine-induced CD4(+) T cells coexpressing chemokine receptor, CXCR5 (facilitates migration to B cell follicles) in blood and whether these responses were representative of lymph node TFH responses. We show that booster modified vaccinia virus Ankara immunization induced a distinct and transient accumulation of proliferating CXCR5(+) and CXCR5(-) CD4 T cells in blood at day 7 postimmunization, and the frequency of the former but not the latter correlated with TFH and B cell responses in germinal centers of the lymph node. Interestingly, gp140 boost induced a skewing toward CXCR3 expression on germinal center TFH cells, which was strongly associated with longevity, avidity, and neutralization potential of vaccine-elicited Ab response. However, CXCR3(+) cells preferentially expressed the HIV coreceptor CCR5, and vaccine-induced CXCR3(+)CXCR5(+) cells showed a moderate positive association with peak viremia following SIV251 infection. Taken together, our findings demonstrate that vaccine regimens that elicit CXCR3-biased TFH cell responses favor Ab persistence and avidity but may predispose to higher acute viremia in the event of breakthrough infections.

Full Text

Duke Authors

Cited Authors

  • Iyer, SS; Gangadhara, S; Victor, B; Gomez, R; Basu, R; Hong, JJ; Labranche, C; Montefiori, DC; Villinger, F; Moss, B; Amara, RR

Published Date

  • August 2015

Published In

Volume / Issue

  • 195 / 3

Start / End Page

  • 994 - 1005

PubMed ID

  • 26116502

Electronic International Standard Serial Number (EISSN)

  • 1550-6606

International Standard Serial Number (ISSN)

  • 0022-1767

Digital Object Identifier (DOI)

  • 10.4049/jimmunol.1500083

Language

  • eng