Four-dimensional diffusion-weighted MR imaging (4D-DWI): a feasibility study.

Journal Article (Journal Article)

PURPOSE: Diffusion-weighted Magnetic Resonance Imaging (DWI) has been shown to be a powerful tool for cancer detection with high tumor-to-tissue contrast. This study aims to investigate the feasibility of developing a four-dimensional DWI technique (4D-DWI) for imaging respiratory motion for radiation therapy applications. MATERIALS/METHODS: Image acquisition was performed by repeatedly imaging a volume of interest (VOI) using an interleaved multislice single-shot echo-planar imaging (EPI) 2D-DWI sequence in the axial plane. Each 2D-DWI image was acquired with an intermediately low b-value (b = 500 s/mm2 ) and with diffusion-encoding gradients in x, y, and z diffusion directions. Respiratory motion was simultaneously recorded using a respiratory bellow, and the synchronized respiratory signal was used to retrospectively sort the 2D images to generate 4D-DWI. Cine MRI using steady-state free precession was also acquired as a motion reference. As a preliminary feasibility study, this technique was implemented on a 4D digital human phantom (XCAT) with a simulated pancreas tumor. The respiratory motion of the phantom was controlled by regular sinusoidal motion profile. 4D-DWI tumor motion trajectories were extracted and compared with the input breathing curve. The mean absolute amplitude differences (D) were calculated in superior-inferior (SI) direction and anterior-posterior (AP) direction. The technique was then evaluated on two healthy volunteers. Finally, the effects of 4D-DWI on apparent diffusion coefficient (ADC) measurements were investigated for hypothetical heterogeneous tumors via simulations. RESULTS: Tumor trajectories extracted from XCAT 4D-DWI were consistent with the input signal: the average D value was 1.9 mm (SI) and 0.4 mm (AP). The average D value was 2.6 mm (SI) and 1.7 mm (AP) for the two healthy volunteers. CONCLUSION: A 4D-DWI technique has been developed and evaluated on digital phantom and human subjects. 4D-DWI can lead to more accurate respiratory motion measurement. This has a great potential to improve the visualization and delineation of cancer tumors for radiotherapy.

Full Text

Duke Authors

Cited Authors

  • Liu, Y; Zhong, X; Czito, BG; Palta, M; Bashir, MR; Dale, BM; Yin, F-F; Cai, J

Published Date

  • February 2017

Published In

Volume / Issue

  • 44 / 2

Start / End Page

  • 397 - 406

PubMed ID

  • 28121369

Pubmed Central ID

  • PMC6116516

Electronic International Standard Serial Number (EISSN)

  • 2473-4209

Digital Object Identifier (DOI)

  • 10.1002/mp.12037


  • eng

Conference Location

  • United States