Skip to main content
Journal cover image

Spatiotemporal sensitivity of thermal stress for monitoring canopy hydrological stress in near real-time

Publication ,  Journal Article
Seyednasrollah, B; Domec, J-C; Clark, JS
Published in: Agricultural and Forest Meteorology.
May 2019

Monitoring drought in real-time using minimal field data is a challenge for ecosystem management and conservation. Most methods require extensive data collection and in-situ calibration and accuracy is difficult to evaluate. Here, we demonstrated how the space-borne canopy “thermal stress”, defined as surface-air temperature difference, provides a reliable surrogate for drought-induced water stress in vegetation. Using physics-based relationships that accommodate uncertainties, we showed how changes in canopy water flux from ground-based measurements relate to both the surface energy balance and remotely-sensed thermal stress. Field measurements of evapotranspiration in the southeastern and northwestern US verify this approach based on sensitivity of evapotranspiration to thermal stress in a large range of atmospheric and climate conditions. We found that a 1 °C change in the thermal stress is comparable to 1–1.2 mm day−1 of evapotranspiration, depending on site and climate conditions. We quantified temporal and spatial sensitivity of evapotranspiration to the thermal stress and showed that it has the strongest relationship with evapotranspiration during warm and dry seasons, when monitoring drought is essential. Using only air and surface temperatures, we predicted the inter-annual anomaly in thermal stress across the contiguous United States over the course of 15 years and compared it with conventional drought indices. Among drought metrics that were considered in this study, the thermal stress had the highest correlation values. Our sensitivity results demonstrated that the thermal stress is a particularly strong indicator of water-use in warm seasons and regions. This simple metric can be used at varying time-scales to monitor surface evapotranspiration and drought in large spatial extents in near real-time.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Agricultural and Forest Meteorology.

DOI

ISSN

0168-1923

Publication Date

May 2019

Volume

269-

Start / End Page

220 / 230

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 37 Earth sciences
  • 31 Biological sciences
  • 30 Agricultural, veterinary and food sciences
  • 07 Agricultural and Veterinary Sciences
  • 06 Biological Sciences
  • 04 Earth Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Seyednasrollah, B., Domec, J.-C., & Clark, J. S. (2019). Spatiotemporal sensitivity of thermal stress for monitoring canopy hydrological stress in near real-time. Agricultural and Forest Meteorology., 269-, 220–230. https://doi.org/10.1016/j.agrformet.2019.02.016
Seyednasrollah, Bijan, Jean-Christophe Domec, and James S. Clark. “Spatiotemporal sensitivity of thermal stress for monitoring canopy hydrological stress in near real-time.” Agricultural and Forest Meteorology. 269- (May 2019): 220–30. https://doi.org/10.1016/j.agrformet.2019.02.016.
Seyednasrollah B, Domec J-C, Clark JS. Spatiotemporal sensitivity of thermal stress for monitoring canopy hydrological stress in near real-time. Agricultural and Forest Meteorology. 2019 May;269-:220–30.
Seyednasrollah, Bijan, et al. “Spatiotemporal sensitivity of thermal stress for monitoring canopy hydrological stress in near real-time.” Agricultural and Forest Meteorology., vol. 269-, May 2019, pp. 220–30. Epmc, doi:10.1016/j.agrformet.2019.02.016.
Seyednasrollah B, Domec J-C, Clark JS. Spatiotemporal sensitivity of thermal stress for monitoring canopy hydrological stress in near real-time. Agricultural and Forest Meteorology. 2019 May;269-:220–230.
Journal cover image

Published In

Agricultural and Forest Meteorology.

DOI

ISSN

0168-1923

Publication Date

May 2019

Volume

269-

Start / End Page

220 / 230

Related Subject Headings

  • Meteorology & Atmospheric Sciences
  • 37 Earth sciences
  • 31 Biological sciences
  • 30 Agricultural, veterinary and food sciences
  • 07 Agricultural and Veterinary Sciences
  • 06 Biological Sciences
  • 04 Earth Sciences