The Lipid A 1-Phosphatase, LpxE, Functionally Connects Multiple Layers of Bacterial Envelope Biogenesis.

Published online

Journal Article

Although distinct lipid phosphatases are thought to be required for processing lipid A (component of the outer leaflet of the outer membrane), glycerophospholipid (component of the inner membrane and the inner leaflet of the outer membrane), and undecaprenyl pyrophosphate (C55-PP; precursors of peptidoglycan and O antigens of lipopolysaccharide) in Gram-negative bacteria, we report that the lipid A 1-phosphatases, LpxEs, functionally connect multiple layers of cell envelope biogenesis in Gram-negative bacteria. We found that Aquifex aeolicus LpxE structurally resembles YodM in Bacillus subtilis, a phosphatase for phosphatidylglycerol phosphate (PGP) with a weak in vitro activity on C55-PP, and rescues Escherichia coli deficient in PGP and C55-PP phosphatase activities; deletion of lpxE in Francisella novicida reduces the MIC value of bacitracin, indicating a significant contribution of LpxE to the native bacterial C55-PP phosphatase activity. Suppression of plasmid-borne lpxE in F. novicida deficient in chromosomally encoded C55-PP phosphatase activities results in cell enlargement, loss of O-antigen repeats of lipopolysaccharide, and ultimately cell death. These discoveries implicate LpxE as the first example of a multifunctional regulatory enzyme that orchestrates lipid A modification, O-antigen production, and peptidoglycan biogenesis to remodel multiple layers of the Gram-negative bacterial envelope.IMPORTANCE Dephosphorylation of the lipid A 1-phosphate by LpxE in Gram-negative bacteria plays important roles in antibiotic resistance, bacterial virulence, and modulation of the host immune system. Our results demonstrate that in addition to removing the 1-phosphate from lipid A, LpxEs also dephosphorylate undecaprenyl pyrophosphate, an important metabolite for the synthesis of the essential envelope components, peptidoglycan and O-antigen. Therefore, LpxEs participate in multiple layers of biogenesis of the Gram-negative bacterial envelope and increase antibiotic resistance. This discovery marks an important step toward understanding the regulation and biogenesis of the Gram-negative bacterial envelope.

Full Text

Duke Authors

Cited Authors

  • Zhao, J; An, J; Hwang, D; Wu, Q; Wang, S; Gillespie, RA; Yang, EG; Guan, Z; Zhou, P; Chung, HS

Published Date

  • June 18, 2019

Published In

Volume / Issue

  • 10 / 3

PubMed ID

  • 31213552

Pubmed Central ID

  • 31213552

Electronic International Standard Serial Number (EISSN)

  • 2150-7511

Digital Object Identifier (DOI)

  • 10.1128/mBio.00886-19

Language

  • eng

Conference Location

  • United States